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1. INTRODUCTION

Data reduction techniques for exactly solving NP-hard combinatorial optimization
problems have proven useful in many studies [Guo and Niedermeier 2007]. The
point is that by polynomial-time executable reduction rules many input instances
of hard combinatorial problems can be significantly shrunk or simplified, without
sacrificing the possibility of finding an optimal solution to the given problem. For
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such reduced instances then often exhaustive search algorithms can be applied to
efficiently find optimal solutions. Hence, data reduction techniques are considered
as a “must” when trying to cope with computational intractability. Studying the
NP-hard problem to cover the edges of a graph with a minimum number of cliques
((Edge) Clique Cover)1, we add a new example to the success story of data
reduction, presenting both empirical as well as theoretical findings.

Our study problem Clique Cover, also known as Keyword Conflict prob-
lem [Kellerman 1973] or Covering by Cliques (GT17) or Intersection Graph
Basis (GT59) [Garey and Johnson 1979], has applications in diverse fields such as
compiler optimization [Rajagopalan et al. 2000], computational geometry [Agarwal
et al. 1994], and applied statistics [Piepho 2004; Gramm et al. 2007]. Thus, it is
not surprising that there has been substantial work on (polynomial-time) heuristic
algorithms for Clique Cover [Kellerman 1973; Kou et al. 1978; Rajagopalan et al.
2000; Piepho 2004; Gramm et al. 2007; Behrisch and Taraz 2006]. In this paper,
we extend and complement this work, in particular introducing new data reduction
techniques.

A clique in an undirected graph G = (V, E) is a set C of vertices such that for
any two vertices in C, there is an edge connecting the two. We will also use “clique”
to refer to the complete subgraph of G induced by C and assume that the exact
meaning will be made clear from context. Formally, as a (parameterized) decision
problem, Clique Cover is defined as follows:

Clique Cover
Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Is there a set of at most k cliques in G such that each edge
in E has both its endpoints in at least one of the selected cliques?

As first observed by Erdős et al. [1966], Clique Cover is equivalent to a problem
from intersection graph theory (see McKee and McMorris [1999] for a monograph
on intersection graphs). Let F = {S1, . . . , Sn} be a family of sets. The intersection
graph of F , denoted Ω(F), is the graph having F as vertex set with Si adjacent to Sj

iff i 6= j and Si∩Sj 6= ∅. It is easy to see that for every feature x ∈ U(F) :=
⋃

S∈F S,
the set Cx := {Si ∈ F | x ∈ Si} forms a clique in Ω(F), and {Cx | x ∈ U(F)} is a
clique cover for Ω(F). Therefore, finding a minimum cardinality clique cover for a
graph G is equivalent to finding a set intersection representation F for G that min-
imizes |U(F)| (called Intersection Graph Basis by Garey and Johnson [1979]).
Guillaume and Latapy [2004] argue that this model is very widely applicable to
discover underlying structure in complex real-world networks. Behrisch and Taraz
[2006] give simple greedy algorithms for Clique Cover that provide asymptoti-
cally optimal solutions for certain random intersection graphs.

Clique Cover is NP-hard [Orlin 1977], even when restricted to planar graphs
[Chang and Müller 2001] or graphs with maximum degree 6 [Hoover 1992]. It is
polynomial-time solvable for chordal graphs [Ma et al. 1989], graphs with maximum

1We remark that covering vertices by cliques (Vertex Clique Cover or Clique Partition) is
of less interest to be studied on its own because it is equivalent to the well-investigated Graph
Coloring problem: A graph has a vertex clique cover of size k iff its complement graph can be
colored with k colors such that adjacent vertices have different colors.
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degree 5 [Hoover 1992], line graphs [Orlin 1977], and circular arc graphs [Hsu and
Tsai 1991]. By way of contrast, Clique Cover is not approximable within a
factor of |V |ǫ for some ǫ > 0 unless P = NP [Lund and Yannakakis 1994], and

nothing better than a polynomial approximation factor of O
(

|V |2 (log log |V |)2

(log |V |)3

)

is

known [Ausiello et al. 1999].
We examine Clique Cover in the context of parameterized complexity (see Flum

and Grohe [2006] and Niedermeier [2006] for new monographs on parameterized
complexity analysis). An instance of a parameterized problem consists of a prob-
lem instance I and a parameter k being a nonnegative integer. A parameterized
problem is fixed-parameter tractable if it can be solved in f(k) · |I|O(1) time, where f
is a computable function solely depending on the parameter k, not on the input
size |I|.

First, as our main algorithmic contribution, we introduce and analyze data reduc-
tion techniques for Clique Cover. As a side effect, we provide a so-called problem
kernel for Clique Cover, for the first time showing—somewhat surprisingly—
that the problem is fixed-parameter tractable with respect to the parameter k.
We continue with describing an exact algorithm based on a search tree. For our
experimental investigations, we combined our data reduction rules with the search
tree, clearly outperforming heuristic algorithms [Kellerman 1973; Kou et al. 1978] in
several ways. For instance, we can solve real-world instances from a statistical appli-
cation [Piepho 2004]—so far solved heuristically [Piepho 2004]—optimally without
time loss. This indicates that for a significant fraction of real-world instances our
exact approach is clearly to be preferred to a heuristic approach which is without
guaranteed solution quality. We also experimented with random graphs of different
densities, showing that our exact approach works extremely well for sparse graphs.
In addition, our empirical results reveal that for dense graphs a data reduction rule
that was designed for showing the problem kernel is often useful. In particular,
this gives strong empirical support for further theoretical studies in the direction
of improved fixed-parameter tractability results for Clique Cover, nicely demon-
strating a fruitful interchange between applied and theoretical algorithmic research.

2. DATA REDUCTION

A (data) reduction rule replaces, in polynomial time, a given Clique Cover in-
stance (G, k) consisting of a graph G and a nonnegative integer k by a “simpler”
instance (G′, k′) such that (G, k) has a solution iff (G′, k′) has a solution. An
instance to which none of a given set of reduction rules applies is called reduced
with respect to these rules. A parameterized problem such as Clique Cover (the
parameter is k) is said to have a problem kernel if, after the application of the
reduction rules, the reduced instance has size f(k) for a function f depending only
on k. It is a well-known result from parameterized complexity theory that a pa-
rameterized problem is fixed-parameter tractable iff it admits a problem kernel [Cai
et al. 1997].

Given an n-vertex and m-edge graph G, we use N(v) to denote the neighborhood
of vertex v in G, namely, N(v) := {u | {u, v} ∈ E}. The closed neighborhood of
vertex v, denoted by N [v], is equal to N(v)∪{v}. We formulate reduction rules for a
generalized version of Clique Cover in which already some edges may be marked
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as “covered.” Then, the question is to find a clique cover of size k that covers
all uncovered edges. Clearly, Clique Cover is the special case of this annotated
version where no edge is marked as covered.

We start by describing an initialization routine that sets up auxiliary data struc-
tures once at the beginning of the algorithm such that the many applications of
Rule 2 (defined below) become cheaper in terms of runtime. Moreover, the data
structures initialized here are also used by the exact algorithm proposed in Sec-
tion 3. From the reduction rules below, only Rule 1 updates these auxiliary data
structures.

Initialization. We inspect every edge {u, v} of the original graph. We use two
auxiliary variables: We compute a set N{u,v} of u and v’s common neighbors and
we determine whether the vertices in N{u,v} induce a clique. More precisely, we
compute a positive integer c{u,v} which denotes the number of edges interconnecting
the vertices of N{u,v}.

Lemma 1. The proposed initialization can be done in O(m2) time.

Proof. For an edge {u, v}, we compute N{u,v} in O(n) time. Computing c{u,v}

can be done in O(m) time. Doing this for all edges requires O(m2) time in total.

We start the presentation of data reduction rules with a trivial rule removing
isolated elements.

Rule 1. Remove isolated vertices and vertices that are only adjacent to covered
edges.

It is obvious that Rule 1 is correct.

Lemma 2. Every application of Rule 1 including the update of auxiliary variables
can be executed in O(nm) time.

Proof. The applicability of Rule 1 can be checked in O(m + n) time. Notably,
after removing a vertex, Rule 1 requires an update of the data structures provided
by the initialization. For one removed vertex v, we have to adjust the sets N{u,w}

and counters c{u,w} for all connected neighbors u and w of v. For an edge {u, w}
with v ∈ N{u,w}, the affected sets and counters can be updated in O(n) time by
removing vertex v from N{u,w} and decreasing c{u,w} by |N(v) ∩ N{u,w}|. For m
edges, the asymptotic runtime of Rule 1 amounts to O(nm).

The next reduction rule is concerned with maximal cliques. Note that we can
safely assume that an optimal solution consists of maximal cliques only, since a
non-maximal clique in a solution can always be replaced by a maximal clique it is
contained in. The following rule identifies maximal cliques which have to be part
of every optimal solution.

Rule 2. If an uncovered edge {u, v} is contained in exactly one maximal clique C,
that is, if the common neighbors of u and v induce a clique, then add C to the so-
lution, mark its edges as covered, and decrease k by one.

Lemma 3. Rule 2 is correct. Every application of Rule 2 can be executed in O(m)
time.
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v

Fig. 1. An illustration of the partition of the neighborhood of a vertex v. The two vertices with
rectangles are exits, the other white ones are prisoners.

Proof. The rule is correct: Edge {u, v} has to be covered and, as mentioned
above, we can assume, without loss of generality, that it is covered by a maximal
clique. If there is exactly one maximal clique C covering {u, v}, then C has to be
part of every optimal solution.

Using the proposed initialization, we can apply Rule 2 in O(m) time: For one
edge, by looking up N{u,v} and c{u,v}, we can determine in constant time whether
the rule is applicable. Scanning through all edges and invoking the rule as soon as
we find an edge for which the rule is applicable can be done in O(m) time.

Rules 1 and 2 remove all degree-1 and degree-2 vertices from the instance. Fur-
ther, they imply that an isolated clique is deleted: Its edges belong to exactly one
maximal clique; the clique, if it contains more than one vertex, is added to the
solution by Rule 2 and its vertices are “cleaned up” by Rule 1.

In the following we present two interrelated reduction rules Rules 3’ and 3. Rule 3’
is subsumed by Rule 3. Nevertheless we choose to present both rules separately
since Rule 3’ is easier to understand. Moreover, as will be shown in Theorem 1,
already Rule 3’ is sufficient to show a problem kernel for Clique Cover.

Rule 3’. If there is an edge {u, v} whose endpoints have exactly the same closed
neighborhood, that is, N [u] = N [v], then mark all edges incident to u as covered.
To reconstruct a solution for the unreduced instance, add u to every clique contain-
ing v.

Comparing N [u] and N [v] for each edge {u, v}, we can in O(nm) time search an
edge for which Rule 3’ is applicable and invoke the rule.

For formulating a generalization of Rule 3’, we introduce additional terminology.
For a vertex v, we partition the set of vertices that are connected by an uncovered
edge to v into prisoners p with N(p) ⊆ N(v) and exits x with N(x)\N(v) 6= ∅.2 We
say that the prisoners dominate the exits if every exit x has an adjacent prisoner.
An illustration of the concept of prisoners and exits is given in Figure 1.

2We remark that the concept of prisoners and exits (and, in addition, “gates”) was introduced for
data reduction rules designed for the Dominating Set problem [Alber et al. 2004]. The strength
of these rules has been proven theoretically [Alber et al. 2004] as well as empirically [Alber et al.
2006].
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Rule 3. Consider a vertex v which has at least one prisoner. If each prisoner is
connected to at least one vertex other than v via an uncovered edge (note that this
is automatically given when the instance is reduced with respect to Rules 1 and 2),
and the prisoners dominate the exits, then delete v. To reconstruct a solution for
the unreduced instance, add v to every clique containing a prisoner of v.

Observe that a vertex v is always a prisoner of a vertex u with u 6= v and N [u] =
N [v] (and vice versa). In particular, this prisoner dominates all exits. Thus, Rule 3’
is subsumed by Rule 3.

Lemma 4. Rule 3 is correct. Every application of Rule 3 can be executed in
O(n3) time.

Proof. For the correctness note that, by definition, every neighbor of v’s pris-
oners is also a neighbor of v itself. If a prisoner of v participates in a clique C, then
C∪{v} is also a clique in the graph. Therefore, it is correct to add v to every clique
containing a prisoner in the reduced graph. Next, we show that all edges incident
to v are covered by the cliques resulting by adding v to the cliques containing v’s
prisoners. We consider separately the edges connecting v to prisoners and edges
connecting v to exits. Regarding an edge {v, p} to a prisoner p, vertex p has to
be part of a clique C of the solution for the instance after application of the rule.
Therefore, the edge {v, p} is covered by C ∪ {v} in the solution for the unreduced
instance. Regarding an edge {v, x} to an exit x, the exit x is dominated by a pris-
oner p and therefore x has to be part of a clique C with p. Hence, the edge {v, x}
is covered by C ∪ {v} in the solution for the unreduced instance.

For executing the rule, we inspect every vertex v to test whether the rule is
applicable. To this end, we inspect every neighbor u of v. In O(n) time, we
determine whether u is an exit or a prisoner. Having identified all prisoners, we can
for every exit u determine in O(n) time whether u is dominated by a prisoner.

One easily observes that there are cases where Rule 3 applies but Rule 3’ does
not; however, we could not make use of this fact to improve the theoretical analysis
which follows in Theorem 1.

Lemma 5. Using Rules 1 to 3, in O(n4) time one can generate a reduced instance
where none of these rules applies any further.

Proof. First, we apply Rule 1 to remove the isolated vertices. Then, we repeat
the following operation until none of Rules 2 and 3 is applicable: Apply one of
Rules 2 and 3, if possible, and, after each application, use Rule 1 to remove the
vertices only adjacent to covered edges. Since each application of Rule 2 or Rule 3
results in at least one vertex only incident to covered edges and each application of
Rule 1 removes at least one vertex from the graph, the above operation is repeated
at most n times. From Lemmas 2, 3, and 4 we can conclude that the total runtime
for the application of the three rules amounts to O(n·(nm+m+n3)). Together with
the runtime of the initialization O(m2) shown in Lemma 1, the claimed runtime
follows.

From a theoretical viewpoint, the main result of this section is a problem kernel
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with respect to parameter k for Clique Cover:3

Theorem 1. A Clique Cover instance reduced with respect to Rules 1 and 3’
contains at most 2k vertices or, otherwise, has no solution.

Proof. Consider any graph G = (V, E) with more than 2k vertices that has a
clique cover C1, . . . , Ck of size k. We assign to each vertex v ∈ V a binary vector bv

of length k where bit i, 1 ≤ i ≤ k, is set to 1 iff v is contained in clique Ci.
Since there are only 2k possible vectors, there must be u 6= v ∈ V with bu = bv.
If bu and bv are all-zero vectors, Rule 1 applies; otherwise, u and v are contained
in the same cliques. This means that u and v are connected and share the same
neighborhood, and thus Rule 3’ applies.

Corollary 2. Clique Cover is fixed-parameter tractable with respect to pa-
rameter k.

Proof. By Theorem 1 a Clique Cover instance reduced with respect to
Rules 1 and 3’ has at most 2k vertices. It takes O(n4) time to generate a reduced in-
stance (Lemma 5). This reduced instance can then be solved by exhaustive search.
Let f(|I|) denote the runtime of exhaustive search on an instance I. Putting things
together, Clique Cover can then be solved in O(f(2k) + n4) time, which implies
the fixed-parameter tractability with respect to parameter k.

The result of Corollary 2 might be surprising when noting that many graph
problems that involve cliques turn out to be hard in the parameterized sense. For
example, the NP-hard Clique problem is known to be W[1]-hard with respect to
the clique size [Downey and Fellows 1999], that is, we have a clear indication that
this problem is not fixed-parameter tractable with respect to the parameter “clique
size.” Another example even more closely related to Clique Cover is given by
the NP-hard Clique Partition problem, which is also hard in the parameter-
ized sense. Herein, we ask, given an undirected graph and k > 0, for a set of
k cliques covering all vertices of the input graph (in contrast to covering all edges
as in Clique Cover). Clique Partition is NP-hard already for k = 3 [Garey
and Johnson 1979]. This can be seen by observing that Clique Partition is
equivalent to Coloring on the complement graph; the number of colors required
for Coloring corresponds to the number of cliques required for Clique Parti-
tion. It is well-known that Coloring is already NP-hard for three colors [Garey
and Johnson 1979]. It follows that there is no hope for obtaining fixed-parameter
tractability for Clique Partition with respect to parameter k, unless P = NP.
In contrast, Clique Cover is shown fixed-parameter tractable in Corollary 2; in
both cases the number of required cliques is the considered parameter.

We conclude this section by mentioning an additional rule which does not seem
to give any improvement on the problem kernel but may nevertheless be interesting
to consider for practical purposes. It differs from the above rules in that it does
not make the instance smaller (in fact it makes it larger), but intuitively seems to
facilitate application of other data reduction rules since it decomposes the input
into separate components.

3The central underlying observation was already made by Gyárfás [1990].
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vC1

C2

C3

v1

v2

v3

Fig. 2. Example for Rule 4. Dashed edges are covered.

Rule 4. Consider the set N of vertices that are connected to a vertex v via
uncovered edges. Let C1, . . . , Cl be the connected components induced by N . If
there is more than one connected component (that is, l > 1), then replace v by l new
vertices v1, . . . , vl, and connect for each 1 ≤ i ≤ l the vertex vi to all vertices in Ci.
In addition, all of v1, . . . , vl are connected by covered edges to all vertices that are
connected to v with a covered edge.

Figure 2 gives an example. It is straightforward to observe that Rule 4 is correct.

3. A SEARCH TREE ALGORITHM

Search trees are a popular means of exactly solving hard problems. The basic
method is to identify for a given instance a small set of simplified instances such
that the given instance has a solution if at least one of the simplified instances has
one. The algorithm then branches recursively into each of the subcases until a stop
criterion is met.

The search tree algorithm presented here for Clique Cover works as follows.
We choose an uncovered edge, enumerate all maximal cliques this edge is part of,
and then branch according to the clique we add to the clique cover. The recursion
stops as soon as a solution is found or k cliques have been chosen without finding a
solution. To simplify notation, we use V = {1, . . . , n} as vertex set. The algorithm
is presented in pseudo-code in Figure 3.

At first glance, this branching seems impractical, since the number of maximal
cliques in a graph can be exponentially large, resulting in a double-exponentially
large search tree. However, in practice it turns out that there are usually only a few
branching cases. We try to give some intuition for this: Sensible inputs for clustering
problems are expected to exhibit transitivity in the sense that if {a, b} and {b, c}
are edges, then probably also {a, c} is an edge (that is, its clustering coefficient
is high). Graphs with many maximal cliques, however, are closely related to the
presence of certain complete multipartite graphs [Prisner 1995]; these multipartite
graphs are very nontransitive.

Regarding the choice of the edge to branch on, we would, ideally, like to branch
on the edge that is contained in the least number of maximal cliques. However,
this calculation would be costly. Therefore, we make use of the infrastructure set
up for an efficient incremental application of Rule 2. The initialization described in
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Input: Graph G = ({1, 2, . . . , n}, E).
Output: A minimum cardinality clique cover for G.
1 k ← 0; X ← nil

2 while X = nil:

3 X ← branch(G, k, ∅)
4 k ← k + 1
5 return X

6 function branch(G,k, X):
7 if X covers G: return X

8 reduce (G, k)
9 if k < 0: return nil

10 choose {i, j} such that
`|N{i,j}|

2

´

− c{i,j} is minimal
11 for each maximal clique C in N [i] ∩N [j]:
12 X ′ ← branch(G, k − 1, X ∪ {C})
13 if X ′ 6= nil: return X ′

14 return nil

Fig. 3. Exact algorithm for Clique Cover.

Section 2 provides a set N{i,j} containing the common neighborhood of edge {i, j}
and a counter c{i,j} containing the number of edges in the common neighborhood

of its endpoints. Therefore,
(|N{i,j}|

2

)

− c{i,j} is the number of edges missing in the
common neighborhood of edge {i, j} as compared to a clique (called score). For
branching, we choose the edge with the lowest score. If the score is 0, then the
edge is contained in only one maximal clique (and thus will be marked as covered
by Rule 2). If the score is 1, the edge is contained in exactly two maximal cliques.
Generalizing this, it is plausible to assume that an edge is contained in few maximal
cliques if its score is low.

Having chosen the edge to branch on, we determine the set of maximal cliques the
edge is contained in using a variant of the classical Bron–Kerbosch algorithm [Bron
and Kerbosch 1973] described by Koch [2001]. While the original Bron–Kerbosch
algorithm does not exhibit the desired output sensitivity (it runs in exponential
time even for a single maximal clique), the variant by Koch turns out to be fast
enough for our purposes.

We use the branching routine within an iterative deepening framework, that is,
we impose a maximum search depth k and increase this limit by one when no
solution is found.

Combining the data reduction rules described in Section 2—which yield a problem
kernel for Clique Cover—with the search tree algorithm described here, we obtain
a competitive fixed-parameter algorithm for Clique Cover that can solve problem
instances of considerable size (a few hundred vertices) efficiently (see Section 4).

4. EXPERIMENTAL RESULTS

We implemented the search tree algorithm from Section 3 and the data reduction
rules from Section 2. The program is written in the Objective Caml programming

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 · Jens Gramm et al.

Clique cover size

n m Heuristic Optimal

A 13 55 4 4
B 17 86 6 5
C 124 4847 50 49
D 121 4706 48 48
E 97 3559 34 31

Table I. Clique cover sizes for five real-world Clique Cover instances, where “Heuristic” is the
heuristic by Kellerman [1973] with the postprocessing by Kou et al. [1978].

language [Leroy et al. 1996] and consists of about 1400 lines of code. The source
code is free software and available from http://theinf1.informatik.uni-jena.

de/ecc/. Graphs are implemented using a purely functional representation based
on Patricia trees [Okasaki and Gill 1998]. This allows to (conceptually) modify the
graph in the course of the algorithm without having to worry about how to restore
it when returning from the recursion. Moreover, it allows for quick intersection
operations on neighbor sets, as required for some reduction rules. The cache data
structure N described in Section 2 is implemented using a priority search queue.

We tested our implementation on various inputs on an AMD Athlon 64 3700+
with 2.2GHz, 1 MB cache, and 1GB main memory, running under the Debian
GNU/Linux 3.1 operating system.

Real-World Data. We first tested the implementation on five “real-world” in-
stances from an application in graphical statistics [Piepho 2004] (see Table I). Cur-
rently, heuristics like that of Kou et al. [1978] are used to solve the problem in
practice [Piepho 2004; Gramm et al. 2007]. With our implementation of the heuris-
tic by Kellerman [1973]—which gives no guarantee for the quality of the solution—,
the runtime is negligible for these instances (< 0.1 s). Our implementation based
on the search tree with data reduction could solve all instances to optimality within
less than one second. In all cases, no branching was required: Rules 1 and 2 al-
ready completely reduced the instances. We observe that the heuristic produces
reasonably good results for these cases; previously nothing was known about its
solution quality. In summary, the application of our algorithm in this area seems
quite attractive, since we can provide provably optimal results within acceptable
runtime bounds.

Random Graphs. Next, we tested the implementation of the exact algorithm on
random graphs, that is, graphs where every possible edge is present with a fixed
probability (Gn,p model). It is known that with high probability a random graph
has a large clique cover of size Θ(n2/ log2 n) [Frieze and Reed 1995]. Therefore,
relying on branching and a not too large search tree is unlikely to succeed, and
data reduction rules are crucial. The results are presented in Figure 4. In the
following, the “size” of an instance means the number of vertices. We examine
three trials: Sparse graphs with m ≈ n lnn, graphs with edge probability 0.1, and
graphs with edge probability 0.15. For the denser graphs outliers occur: for example
for graphs of size 79 and edge probability 0.15, all of 20 instances could be solved
within 10 seconds but one, which took 16 minutes. In contrast, sparse graphs can
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Fig. 4. Runtime for random graphs. Runs were aborted after 10 minutes. Left: average runtime
of successful runs; right: percentage of aborted runs.

n m |C| runtime search tree Rule 1 Rule 2 Rule 3 Rule 4

sparse 1000 6 954 6 180 1.00 1 1 000 6180 0 0
1000 6 816 6 022 0.96 1 1 000 6022 0 0
1000 6 861 6 107 0.96 1 1 000 6107 0 0

p = 0.1 156 1 230 653 20.58 254584 845 180 429 193 0 39 042
156 1 194 644 0.02 27 194 664 0 1
156 1 226 646 3285.43 21 889 796 112 527 915 63 709 259 0 5 313 473

p = 0.15 85 524 273 0.01 1 85 273 0 0
85 545 272 15.88 132056 705743 382767 0 25032
85 560 265 1505.94 8725027 47947699 27087827 0 3295196

Table II. Statistics for selected random Clique Cover instances. Here, p is the edge probability,
runtime is measured in seconds, |C| is the size of the clique cover, “search tree” is the number of
nodes in the search tree, and “Rule r” is the number of applications of Rule r.

be solved uniformly very quickly: Instances of size 5 000 can still be solved within
80 seconds and instances of size 10 000 within 7 minutes, with a standard deviation
for the runtime of < 2 %. Very little branching is required for sparse instances, with
most being solved by data reduction alone, and the largest search tree observed in
the experiments having 528 nodes. Thus, our approach is very promising for sparse
instances up to moderate size, while for denser instances probably a fallback to
heuristic algorithms is required to compensate for the outliers.

The presence of extreme outliers for some combinations of parameters makes it
difficult to get a clear picture based only on combining statistics such as averages.
Therefore, we show measurements for several concrete instances in Table II. For
edge probability 0.1 and 0.15, respectively, we select an instance that takes very
long, and additionally present two arbitrary instances with similar parameters. For
sparse graphs, no such outliers occur, so we show three arbitrary instances of similar
size.

The reason for the outliers are the usually but not always effective data reduction
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Fig. 5. Runtime and search tree size for random intersection graphs of density 0.3 (average over
20 instances each)

rules. In all instances, we observe an initial reduction phase with many applications
of reduction rules. Most of the random graphs with 75 vertices and edge density
0.15 are almost entirely processed by the reduction rules: Out of 50 examined in-
stances we observe search trees with depth more than 3 for 8 instances and 24
instances are completely reduced without branching. However, in rare cases we do
encounter instances with an “unreducible core” to which no reduction rule is appli-
cable. Moreover, with an unreducible core it is only rarely the case that reduction
rules become applicable after the next branching. Consequently, an unreducible
core does cause a significant number of branchings in the search tree.

Synthetic Data. Real instances are not completely random; in particular, in most
sensible applications the clique cover is expected to be much smaller than that of
a random graph. The fixed-parameter result also promises a better runtime for
instances where the clique cover is small. To examine this, we generated random
intersection graphs using the Gn,m,p model (see Behrisch and Taraz [2006] and
references therein), where each of n vertices draws each of m features with proba-
bility p (note here m does not denote the number of edges as elsewhere). We can
control the size of a clique cover by choosing m: the size of the clique cover must
be m or slightly lower in case Cx ⊆ Cy for two features x and y (see Section 1
for the notation). By choosing p, we can generate instances with a desired edge
density.

We generated instances with 100 vertices and about 1500 edges (making for a den-
sity of 0.3), and varying number of planted cliques m. Figure 5 shows the resulting
runtimes. In fact, these quite dense instances can be solved very quickly when the
size of the clique cover is small. This makes our exact algorithm also attractive for
the numerous applications where we can expect a small clique cover as solution—an
observation which is in agreement with our fixed-parameter tractability result.

Effectiveness of Rules 3 and 4. The prisoner-exit-rule (Rule 3) and the neighbor-
hood-splitting-rule (Rule 4) are comparably complicated; Rule 3 has been developed
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in context with searching for a problem kernel. Do they really gain any benefit in
practice? To examine this question, we repeated the previous experiment with ei-
ther Rule 3 or Rules 3 and 4 disabled (see Figure 5). Rule 4 does in fact increase
the runtime, simply because it is rarely ever applicable in these dense instances.
Although Rule 3 increases also the runtime as shown in the left-hand diagram of
Figure 5, we recommend to apply it. This is justified by the right-hand side of
Figure 5: The reduction of the search tree size indicates that—together with a
more efficient implementation of Rule 3, the overall complexity can be (asymptoti-
cally) improved. In particular, we believe that, using incremental calculations, the
runtime of Rule 3 could be significantly reduced.

5. OUTLOOK

As seen in Table II, there are some outliers with exceedingly high runtimes when
compared to “similar” instances. It is an intriguing open question whether there
are further data reduction rules that can cope with the remaining outliers. In
parallel, this might also lead to a better upper bound on the problem kernel size
and improved fixed-parameter tractability for Clique Cover.

In this paper, the proposed data reduction rules were not only used as preprocess-
ing, but they were continuously interleaved with the branching of the search tree
algorithm. It remains open how far one may get by combining the data reduction
rules with integer linear programming, here using them only as preprocessing.
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