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1 Introduction

CLOSEST STRING

Given: k strings from ΣL and a positive integer d.
Question: Find a “closest string” s such that none of
the given strings has Hamming distance greater than d

to s.

Example (dH denotes the Hamming distance):

s1 = TAGTGTATT
s2 = TGTTGTATT
s3 = TAGTGTGCT
s4 = TGGTGTGTT

s = TGGTGTGTT
“closest string” with
dH(s, si) ≤ 2 for i = 1, 2, 3, 4

• CLOSEST STRING is NP-complete.

Here, we exploit two new techniques for solving CLOSEST

STRING (partially presented in [4]) and provide experimental
evidence to show that they are practically useful for primer de-
sign andmotif search (the experiments reported here aremade
on a SUN workstation with Ultrasparc IIe processor with 500
MHz and 512 MB main memory).

2 Exact Algorithms

for CLOSEST STRING

In [4], we presented new algorithmic strategies for solving
CLOSEST STRING and showed an application in primer design.
We summarize and update some results:

Search tree algorithm

• Running time O(kL + kd · dd), i.e., the exponential growth of
the running time bounded by a function in d only. This is of
importance for biological applications where d tends to be a
small number.

• E.g., randomly generated instances with L = 50, d = 20,
k = 50 can be solved in 100 sec and instances with d < 10
(and reasonable values of L and k) in less than 1 sec.

Integer Linear Programming

• Ben-Dor et al. [1]: ILP formulation using L · |Σ| many vari-
ables.

• In [4]: ILP formulation in which the variable number de-
pends only on the number of input strings.

• Both formulations can be solved efficiently (on randomly
generated data for L ≤ 100, k ≤ 20 in less than 1 sec) us-
ing heuristic branch and bound techniques for ILPs; e.g., we
used the GNU GLPK library.

• Experiments indicate that the second ILP formulation is
preferable for instances with a small number of long input
strings.

3 Application in Primer Design.

Algorithms for CLOSEST STRING can be used to design
primers that bind to all sequences from a given set of homolo-
gous sequences.
Strategy to design primers of length L that bind to each se-
quence with at most d mismatches:

1. Compute an alignment of these sequences.

2. “Slide” a length L window over all the aligned strings,
solving a CLOSEST STRING instance for every window
position. Using the search tree algorithm, (2) can be
done in time O(kL + (n − L)kd · dd) (i.e., linear time for
constant d) where n is the length of the alignment.
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The search tree algorithm is advantageous:

• In this application, parameter d usually has a small value.

• It is easy to incorporate constraints desirable for primers,
e.g., disallowing mismatches in initial positions of the
primer or searching solutions favorable in terms of melting
temperature.

•An extension of the algorithm can deal with the situation
when we are given an additional set of sequences to which
the primer should not bind.

4 Application in Motif Search

In motif search, given a set of k strings and parameters L and
d, the objective is to find an (L, d)-motif, which is a string of
length L such that each of the given strings has a length L sub-
string with distance at most d to the motif.

Enumerative Algorithm

This algorithm uses CLOSEST STRING as a subproblem. Simi-
lar to [5], in a first phase our algorithm enumerates candidates,
where, in our case, the “filtering process” is more elaborate
since, in a second phase, we check the outcome of the first
phase:

1. Identify the “k-cliques” of substrings, taking one sub-
string from each given string, with pairwise distance at
most 2d each time.

2. For each such candidate set, use a CLOSEST STRING al-
gorithm to test whether it gives rise to a motif.

Step 1 is a recursive algorithm that enumerates all possible sets
of substrings: For each length L substring s1 of the first input
string, it considers each length L substring s2 of the second
input string with distance at most d to s1. For each such pair
s1, s2 it considers each length L substring s3 of the third string
with distance at most d to s1 and s2, and continues recursively.

Example with k = 4 given strings, motif length L = 5, and
d = 1 allowed mismatches (red arrows denote a Hamming
distance of at most 2d = 2):
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Refinement. E.g., if two substrings in the set have distance ex-
actly 2d, we can restrict the set of possible closest strings:
each of its characters must match the corresponding charac-
ter in one of the two substrings.

CLOSEST STRING algorithm.With parameter values in prac-
tical settings, both described CLOSEST STRING approaches
are efficient; for our experiments, we used the ILP.

Spurious Motifs.Our algorithm finds all positions in the
strings that meet the specified requirements and will report
no positions that do not; this is its advantage in contrast to
algorithms in [5] and [3]. However, it clearly cannot exclude
to find spurious motifs, e.g., random motifs in artificially
generated data that have not been implanted. Note that
not all combinations of L and d values are reasonable; if d

is chosen too large compared to L, we can expect spurious
randommotifs [3], e.g., with 20 random sequences of length
600, one can expect at least one (15, 5)-motif.

Performance.Compared to the algorithm in [2], ours is less
sensible to growing values of L and d; however, it is more
sensible to growing number and length of the input se-
quences.

Experiments — Artificial Data

The artificially generated data we used are random strings
containing one implanted motif. The enumerative algorithm
can find an implanted (L, d)-motif in 20 strings of length 600
for different L and d values that were posed as “challenge
problems” in [5] or [3]:

L d running time L d running time L d running time
13 3 6 sec 15 4 40 sec 17 5 5 min
14 4 7 min 16 5 1 h 57 min 19 6 59 min

Hard instances. The (18,6) problem, harder for the algorithm
in [3], turns out to be particularly hard for us also.

Longer motifs.We solve, e.g., the (29,9) problem in 2 minutes.

Longer input sequences.We solve, e.g., the (15,4) problem for
strings of length 1000 in 4 minutes.

Performance on 20 strings of length 600with different parame-
ter values for L and d (green = processing time less than 1 min;
yellow = processing time up to a few hours; red = instances
unsolvable due to high processing time; blue = instances un-
solvable due to spurious motifs):
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Experiments — Real Data

We also tried data from the ACUTS gene database, which con-
tains sets of homologous noncoding sequences with 5–10 se-
quences of length 500–1000 per set. Our algorithm performs
quite good on these data; for example, we can answer the
question “Given a value d, what is the longest value for L for
which we can find an (L, d) motif?” within seconds for every
sample.

This research was supported by the DFG, research project
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biology), NI 369/2-1.
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