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Abstract

We initiate the first systematic study of the NP-hard CLUSTER VER-
TEX DELETION (CVD) problem (unweighted and weighted) in terms of
fixed-parameter algorithmics. In the unweighted case, one searches for a
minimum number of vertex deletions to transform a graph into a collec-
tion of disjoint cliques. The parameter is the number of vertex deletions.
We present efficient fixed-parameter algorithms for CVD applying the
fairly new iterative compression technique. Moreover, we study the vari-
ant of CVD where the maximum number of cliques to be generated is
prespecified. Here, we exploit connections to fixed-parameter algorithms
for (weighted) VERTEX COVER.

1 Introduction

Graph modification problems form a core topic in algorithmic graph theory
with many applications. In particular, cluster graph modification problems [36]
have recently received considerable interest. Here, the basic problem is, given
an undirected graph G, to find a minimum number of editing operations that
transform G into a collection of disjoint complete subgraphs, a cluster graph.
Each of these disjoint complete subgraphs is called a cluster. Herein, the three
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standard editing operations are adding edges, deleting edges, and deleting ver-
tices. For instance, CLUSTER EDITING asks whether a graph can be transformed
into a cluster graph by altogether at most k edge additions and edge deletions.
CLUSTER EDITING is NP-complete; it recently has shown particularly useful
for clustering biological data [10, B3]. Whereas also a factor-2.5 polynomial-
time approximation for CLUSTER EDITING is known [3, 4, 3&], in practical
applications fixed-parameter algorithms (combined with some heuristics) pro-
viding optimal solutions seem to dominate [4, Ifl, [10, 33]. For a background
on fixed-parameter algorithmics we refer to |14, (11, 129]. Parameterized com-
plexity studies for CLUSTER EDITING were initiated by Gramm et al. [21] and
have been further pursued in a series of papers |3, 6, [10, 113, 20, 22, 132, 133].
A previously shown bound of O(1.92% + n?) for an n-vertex graph [2(] can be
improved by combining a linear-time problem kernelization algorithm [13] that
yields an instance with O(k?) vertices with the currently best claimed running
time of O(1.82F+n?) [f] to get an algorithm with running time O(1.82% +n+m),
where m is the number of edges in the graph. Moreover, problem kernels, based
on efficient data reduction rules, with only O(k) vertices are known [13, 22], the
best upper bound currently being 4k [22].

Whereas CLUSTER EDITING has been subject to intensive research, its “sis-
ter problem” CLUSTER VERTEX DELETION so far has been widely neglected.
Here, we aim at finding a vertex set of minimum weight such that its deletion
transforms a given graph into a cluster graphﬂ

Weighted CLUSTER VERTEX DELETION

Instance: An undirected graph G = (V, E), a vertex weight function w :
V — [1,00), and a nonnegative number k.

Question: Is there a vertex set X C V with ) _ w(v) < k such that
deleting all vertices in X from G results in a cluster graph (i.e., a graph
where every connected component forms a complete graph)?

The unweighted version asks whether there exists a subset X C V such that | X| <
k (in other words, all vertices have weight exactly one). We call a set of vertices
whose deletion produces a cluster graph a CVD set.

Motivation. Like CLUSTER EDITING, CLUSTER VERTEX DELETION may find
applications in graph-modeled data clustering: Assume that we have a number
of samples, some of which are equivalent (e.g., DNA samples, some of which
are from the same species) and a method to test two samples for equivalence. A
graph is formed where each vertex corresponds to a sample and an edge between
two vertices is added when their samples are tested as equivalent. In the absence
of errors, the resulting graph is a cluster graph, where each connected compo-
nent corresponds to an equivalence class (e. g., a species). However, an unknown
subset of samples may be contaminated and can produce unpredictable compar-
isons to other samples. An optimal solution for unweighted CLUSTER VERTEX

IParameterized problems (as follows) usually are formulated as decision problems—all
our algorithms will also solve the corresponding optimization problem within the same time
bounds.
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DELETION, that is, a minimum-cardinality set of vertices whose deletion pro-
duces a cluster graph, then provides the most parsimonious explanation for the
data under this model. This clearly extends to the weighted case.

CLUSTER VERTEX DELETION can also be seen as the problem of making a
symmetric relation transitive by omitting a minimum number of elements. The
related problem of making an antisymmetric relation transitive by omitting a
minimum number of elements is also known as FEEDBACK VERTEX SET in
tournaments (see, e. g., [L1, 34] for fixed-parameter tractability results).

A further application for CLUSTER VERTEX DELETION is the computation
of a maximum clique of a graph with the help of a CVD set. Suppose a CVD
set X has been computed. Clearly, a maximum clique is at least as large as the
largest cluster of the remaining cluster graph G[V \ X]. If there is a clique that
is even larger, then it must contain some vertices of X. The vertex set S C X
that is contained in the maximum clique must induce a complete graph. For
each such vertex set S, we can find the maximum clique that contains S and
vertices of G by finding the cluster in G that contains the most vertices that
are neighbors of S. Therefore, we can find a maximum clique of a graph by
enumerating all subsets S of X, checking whether the respective subset induces
a complete graph, and then finding the cluster in G[V \ X] that contains the
most vertices that are neighbors of all vertices in S. A clique that has maximum
size of all cliques thus found is a maximum clique of G. A similar approach can
be used to find the maximum independent set of G. Therefore, the problem of
finding a maximum clique or a maximum independent set of a graph G can be
parameterized by the size of the CVD set of G, or by the size of the CVD set
of the complement graph G, respectively.

Finally, in comparison to CLUSTER EDITING, a small parameter value k
(that is, the number of editing operations) appears even more likely for CLUS-
TER VERTEX DELETION, since the vertex deletion operation is more powerful,
making a parameterized approach particularly meaningful here.

Known results. By general results for vertex deletion problems for heredi-
tary graph properties [21], it follows that already unweighted CLUSTER VERTEX
DELETION is NP-complete. The optimization version is MaxSNP-hard [2€].
Ounly few specific results for (unweighted) CLUSTER VERTEX DELETION are
knownB These are based on the simple observation that a graph is a cluster
graph if and only if it does not contain an induced P, a path on three vertices
Using this characterization, one directly obtains fixed-parameter tractability [1]
as well as a factor-3 polynomial-time approximation algorithm. Gramm et al.
[20] used an elaborate case distinction found with computer help to derive a

2Jansen et al. [26] studied the closely related problem of finding d pairwise disjoint cliques
with maximum overall number of vertices, motivated by applications in scheduling. Note that,
other than in CLUSTER VERTEX DELETION, they allowed to have edges between cliques. Jansen
et al. gave polynomial-time algorithms for special graph classes, contrasting the NP-complete
general case.

3In the remainder of this work, when writing of containment of a Ps in a graph we refer
to an induced Ps.
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search tree algorithm running in O(2.26*m) time for an m-edge graph. This
can be improved to O(2.08% 4+ n?), n denoting the number of vertices, by using
a straightforward reduction of unweighted CLUSTER VERTEX DELETION to the
3-HITTING SET problem (transforming each induced P; into a three-element
set) and employing a sophisticated algorithm for 3-HrTTING SET [37]. More-
over, kernelization results for 3-HITTING SET [1] also imply an O(k?)-vertex
problem kernel for unweighted CLUSTER VERTEX DELETION, which can be
found in O(n?) time. A weighted CLUSTER VERTEX DELETION instance can be
easily transformed into a weighted 3-HITTING SET instance. With this transfor-
mation, an O(k?)-vertex problem kernel result for weighted 3-HITTING SET [2]
can be adapted to weighted CLUSTER VERTEX DELETION. Moreover, weighted
3-HITTING SET possesses an elaborate search tree algorithm based on case dis-
tinction [14], implying an O(2.25% + n3) running time for weighted CLUSTER
VERTEX DELETION.

Iterative compression, as first described by Reed et al. [37], is a technique
for the development of fixed-parameter algorithms. For an introduction and a
survey on state of the art results that employ iterative compression we refer
to Guo et al. [23]. Hiiffner [24] gives experimental evaluations of some itera-
tive compression algorithms, demonstrating their usefulness on real-world and
synthetic data.

New results. One of our main results is an elegant iterative compression al-
gorithm for weighted CLUSTER VERTEX DELETION using matching techniques,
running in O(2°k° + nm) timel We extend our studies to the (also NP-hard)
case where the number of clusters to be generated is limited by a second parame-
ter d. Such studies have also been undertaken for CLUSTER EDITING |19, 122, 136],
but note that for CLUSTER EDITING clearly d < 2k. By way of contrast, since
vertex deletion is a stronger operation than edge deletion, in the case of CLUS-
TER VERTEX DELETION also d > 2k is possible. Observe that d = 1 yields the
CLIQUE problem; therefore, a parameterization only with respect to the param-
eter d is meaningless. Considering the combined parameter (d, k), however, we
can provide further fixed-parameter tractability results. First, we nontrivially
extend the kernelization result for weighted CLUSTER VERTEX DELETION to a
problem kernel for weighted d-CLUSTER VERTEX DELETION, again achieving an
O(k3)-vertex problem kernel. Based on this, we develop three fixed-parameter
algorithms for weighted d-CLUSTER VERTEX DELETION with the following run-
ning times: O(2%-k%+nm), O(1.40%-k3?+nm), and O(1.84*T¢+nm). Depending
on the value of d, each of these algorithms may be preferable in certain constel-
lations. In the latter two algorithms, fixed-parameter algorithms for weighted
VERTEX COVER play a decisive role.

Notation. In this paper, for a graph G = (V, E) and a vertex set S C V,
let G[S] be the subgraph of G induced by S and G\ S := G[V \ 5], and

4A similar algorithm for CLUSTER VERTEX DELETION later has also been described by
Fomin et al. [1€].
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CoMPRESSCVD(G, X)

1 X' X
2 for each ) # S C X:
3 if G[S] is a cluster graph:

4 G =G\ (X\S); R-V(G'\9)

5 G’ —REDUCTIONRULHI(G', S)

6 G’ —REDUCTIONRULHZ(G', S)

7 G’ —REDUCTIONRULH( G, S)

8 Classify each vertex u in R according to N(u) NS
9 H «— auxiliary graph

10 M — maximum weight matching in H

11 Delete all vertices not in a class corresponding to an edge in M
12 D « vertices deleted in lines 4-7 and 11

18 if w(D) < w(X'):

14 X'+~ D

15 return X’

Figure 1: Pseudo-code for COMPRESSCVD, where w(A) := 3 4 w(v) for A C
V.

let N(v) :={u eV |{u,v} € E}. We write V(G) to denote the vertex set of G.

2 TIterative compression for Cluster Vertex Dele-
tion

We now describe a novel iterative compression algorithm for weighted CLUSTER
VERTEX DELETION. General considerations about iterative compression algo-
rithms can be found in [23, 25] and |29, Chapter 11]. We first describe how to
employ a compression routine, and then the compression routine itself.

The general idea behind our iterative compression is as follows. We start
with V/ = () and X = 0; clearly, X is a CVD set for G[V’]. Tterating over
all graph vertices, step by step we add one vertex v ¢ V' from V to both V’
and X. Then X is still a CVD set for G[V’], although possibly not a minimum
one. We can, however, obtain a minimum one by applying the compression
routine COMPRESSCVD. It takes a graph G and a CVD set X for G, and
returns a minimum CVD set for G. Therefore, it is a loop invariant that X
is a minimum-size CVD set for G[V’]. Since eventually V' = V', we obtain an
optimal solution for G once the algorithm returns X.

In the rest of this section, we describe the compression routine COMPRESS-
CVD following the pseudo-code in For this, consider a smaller CVD
set X' as a modification of the larger CVD set X. This modification retains
some vertices Y C X, while the other vertices S := X \ Y are replaced by at
most | S| —1 new vertices from V'\ X. The idea is to try by brute force all 2% —1
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(c) After (d) After

Figure 2: Data reduction in the compression routine.

partitions of X into such sets Y and S (line 2). For each such partition, the
vertices from Y are immediately deleted, since we already decided to take them
into the CVD set. In the resulting instance G’ = (V', E’) := G\ Y, it remains
to find an optimal CVD set that is disjoint from S. This is a much easier task
than finding a CVD set in general; in fact, it can be done in polynomial time
using data reduction and maximum matching.

First, we discard partitions where S does not induce a cluster graph (line 3);
these cannot lead to a solution, since we determined that none of the vertices
in S would be deleted. Further, R := V' \ S also induces a cluster graph,
since R = V'\ X and X is a CVD set. Therefore, the following problem remains:

CVD COMPRESSION

Instance: An undirected graph G = (V, E), a vertex weight function
w:V — [1,00), and a vertex set S C V such that G[S] and G\ S are
cluster graphs.

Task: Find a vertex set X’ C V'\ S such that G\ X’ is a cluster graph
and ) w(x) is minimum.

An example instance is shown in The instance can now be simpli-
fied by a series of data reduction rules. The results are shown in Figures Bb—d.

Reduction Rule 1. Delete all vertices in R := V' \ S that are adjacent to more
than one cluster in G|[S].

Proof of correctness. If a vertex v € R is adjacent to vertices u and w in different
clusters in S, then uvw induces a P3 that can only be removed by deleting v (be-
cause the vertices in S cannot be deleted). O
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(c) Final resulting cluster graph

Figure 3: Assignment problem in the iterative compression, unweighted case.

Reduction Rule 2. Delete all vertices in R that are adjacent to some, but not
all vertices of a cluster in G[S].

Proof of correctness. If a vertex v € R is adjacent to a vertex u, but not to a
vertex w in a cluster in S, then uwv induces a P3, which can only be removed
by deleting v. O

Reduction Rule 3. Remove connected components that are complete graphs.

Proof of correctness. No optimal solution deletes vertices in such components.

O

After Reduction Rules[[H have been applied, the instance is much simplified
([Eigure 2d). In each cluster in G[R], we can divide the vertices into equivalence
classes according to their neighborhood in S; each class then contains either
vertices adjacent to all vertices of a particular cluster in G[S], or the vertices
adjacent to no vertex in S (see [Figure 3a)). This classification is useful because
of the following lemma.

Lemma 1. In an optimal CVD COMPRESSION solution, for each cluster in G[R],
the vertices of at most one class are present.

Proof. Clearly, it is never useful to delete only some, but not all vertices of
a class, since if that led to an optimal solution, we could always re-add the
deleted vertices without introducing new P3’s. Further, if v € R is adjacent to
some w € S, and wu is a vertex from the same cluster as v, but from a different
class, then uvw is a Ps; therefore, we cannot keep vertices from two different
classes within a cluster. O
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Because of [Cemma 1l the remaining task is an assignment of each cluster
in G[R] to one of its classes (corresponding to the preservation of this class,
and the deletion of all other classes within the cluster) or to nothing (corre-
sponding to the complete deletion of the cluster). However, we cannot do this
independently for each cluster; we must not choose two classes from different
clusters in G[R] which are adjacent to the same cluster in G[S], since that would
create a P3. This can be modelled as a weighted bipartite matching problem in
an auxiliary graph H, where each edge corresponds to a possible choice. The

graph H is constructed as follows (see [Figure 3b):

e Add a vertex for every cluster in G[R] (white vertices).
e Add a vertex for every cluster in G[S] (black vertices in S).

e For a cluster Cg in G[S] and a cluster Cr in G[R], add an edge between
the vertex for C's and the vertex for Cp if there is a class in C'g adjacent
to C's. This edge corresponds to choosing this class for Cr and is weighted
with the total weight of the vertices in this class.

e Add a vertex for each class in a cluster C'g that is not adjacent to a cluster
in G[S] (black vertices outside .S), and connect it to the vertex represent-
ing Cr. Again, this edge corresponds to choosing this class for Cr and is
weighted with the total weight of the vertices in this class.

Since we only added edges between a black and a white vertex, H is bipartite.
The task is now to find a mazimum-weight bipartite matching, that is, a set
of edges of maximum weight where no two edges have an endpoint in common.
This allows any choice for a cluster, as long as no two clusters share edges to the
same cluster in G[S]. The following lemma shows that this is a valid approach:

Lemma 2. A mazimum-weight bipartite matching in H provides an optimal
CVD COMPRESSION solution.

Proof. Each edge in a matching corresponds to a class in a cluster of G[R].
The CVD COMPRESSION solution is to delete all vertices in R but those of
the selected classes. The matching cannot select two classes within the same
cluster, since the corresponding edges have an endpoint in common; similarly,
it cannot select two classes that share a connection to the same cluster in G[S].
Therefore, a matching yields a feasible solution. By [Lemma 1l an optimal CVD
COMPRESSION solution corresponds to an assignment of each cluster to one of
its classes or to nothing, and therefore, it corresponds to a matching. Finally,
the weight of a matching corresponds to the weight of the vertices not deleted
from R, and therefore a maximum-weight matching corresponds to an optimal
CVD COMPRESSION solution. O

shows the resulting cluster graph for our example after deleting
the vertex sets corresponding to edges that are not selected by the maximum-
weight matching shown in by bold edges. Note that the size of the
solution can be upper-bounded by k + 1, since Vv € V : w(v) > 1. Altogether,
we obtain
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Proposition 1. Weighted CLUSTER VERTEX DELETION can be solved in O(2F-
n%(m +nlogn)) time.

Proof. The correctness of the algorithm has already been shown. It remains
to bound the running time. We can find clusters in S and R in O(m) time by
depth-first search within G[S] and G[R]. [Reduciion Rule Tlcan then be executed
in O(m) time. If Reduciion Rule Tl has been applied, [Reduciion Rule 2 can be
executed in O(m) time by examining the degree of each vertex in R. Reduction
Rule Bl can be executed in O(m) time. Finally, we need to find a maximum
weight matching in a bipartite graph with at most n vertices and at most m
edges, which can be done in O(n(m + nlogn)) time [17]. Therefore, we can
solve CVD COMPRESSION in the same time. The number of vertices in an
intermediary solution X to be compressed is bounded by k£ + 1, because any
such X consists of an optimal solution for a subgraph of G plus a single vertex.
In one compression step, CVD COMPRESSION is thus solved O(2F) times, and
there are n compression steps, yielding a total of O(2%-n?(m+nlogn)) time. O

For the unweighted case, we can get better running times, since integer
weighted matchings can be found faster than general weighted ones.

Theorem 1. Unweighted CLUSTER VERTEX DELETION can be solved in O(2F -
km+y/nlogn) time.

Proof. For each matching instance, we can use an algorithm for integer weighted
matching with a maximum weight of C' = n [1§], yielding a running time of
O(m+/nlog(nC)) = O(m+/nlogn). Further, in iterative compression, we can
save some iteration rounds by starting with a large subgraph for which we can
still find in polynomial time a solution of size at most k. For CLUSTER VERTEX
DELETION, we can find a solution of size at most 3k by simply repeatedly finding
a P53 and then taking all three of its vertices. We can then start the iteration
with G lacking these at most 3k vertices and an empty CVD set, after which
we will need only 3k iteration rounds. O

Using problem kernelization, we can reach an additive running time of the
form O(f(k) + poly(n)). First, we improve the running time bound on the
enumeration of P3’s, compared to the trivial running time bound of O(n?).

Proposition 2. All P;’s of a graph can be enumerated in O(nm) time.

Proof. We can enumerate the P;’s by enumerating for each vertex v € V the P3’s
in which v has degree two. This is done by scanning through v’s adjacency list.
For each vertex u in the adjacency list, we check for all vertices w that appear
after v in the adjacency list of v whether uv and w are adjacent. If this is not
the case, then we have found a P; uvw and output it. The running time of this
approach can be bounded as follows: for each vertex v, we spend O(deg(v) -
deg(v)) time, since we scan through its adjacency list, and for each position
in the adjacency list, we scan once again through the part of the list after this
position. Testing adjacency can be performed in constant time via an adjacency
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matrix. Therefore, the total running time can be bounded as O(}_, oy deg(v) -
deg(v)) = O(ZUEV deg(v) - n) = O(nm). O

Applying this algorithm for enumeration of P3’s together with a kernelization
for 3-HITTING-SET [1]] leads to the following running time.

Theorem 2. Unweighted CLUSTER VERTEX DELETION can be solved in O(2F -
kSlogk + nm) time.

Proof. In O(nm) time, we enumerate the P3’s of G. We then apply the linear-
time kernelization by Abu-Khzam and Fernau |2, which gives us an instance
with O(k3) vertices. To this instance, we apply the kernelization algorithm that
yields a kernel with O(k?) vertices (running in O(k°) time) [1]. Finally, we

apply [Theorem 11 O

Curiously, we can use this unweighted algorithm as a subroutine to speed up
the weighted case: if we have a solution for an unweighted instance, we can get
an optimal weighted solution by executing the compression routine once. This
works because the compression only requires that the set X to compress is a
CVD set, and does not make any assumptions about its weight.

Theorem 3. Weighted CLUSTER VERTEX DELETION can be solved in O(2* -
K 4+ nm) time.

Proof. Using the kernelization by Abu-Khzam and Fernau [2], we can in O(nm)
time first shrink the instance to O(k?) vertices. Then we can use the algorithm
for the unweighted problem for all compression steps except the last one. For
a kernel of size k2, this takes O(2* - k° + nm) time using [[Theorem 11 A single
compression for the weighted problem takes O(2* - n(m + nlogn)) time, giving
a time of O(2F(k° + k®logk)) = O(2*k?) for the kernelized instance. In total,
we arrive at the claimed bound. (|

In fact, we even have a stronger parameterization in [Theorem 3 when com-
pared to as parameter k, we can use the number of vertices in
an optimal unweighted solution, which is less than or equal to the number of
vertices in an optimal weighted solution, which in turn is less than or equal to
the minimum weight of a weighted solution.

Since the matching subproblem is the bottleneck of the algorithm, it would
be nice to replace it with something simpler. However, it is straightforward to
show that the assignment problem in the last step of the compression routine is
as hard as the task of finding a maximum weight matching in a bipartite graph,
even after applying Reduction Rules IH3 This indicates that the bottleneck of
computing the maximum weight matching might actually be very difficult to
overcome with our approach.

10
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3 Cluster Vertex Deletion with a limited num-
ber of clusters

In clustering applications, it is often desirable to limit the number of output
clusters, for example to simplify manual verification of the solution. The deletion
of vertices should then produce a d-cluster graph, that is, a graph comprising at
most d clusters.

Weighted d-CLUSTER VERTEX DELETION

Instance: An undirected graph G = (V, E), a vertex weight function
w:V —[1,00), and a nonnegative number k.

Question: Is there a vertex set X CV with ) _ w(v) < k such that
deleting all vertices in X from G results in a d-cluster graph?

Since the property of being a d-cluster graph is hereditary, it follows that d-
CLUSTER VERTEX DELETION is NP-complete [217].
We can show that slightly modifying the kernelization approach from Sec-

tion [ that makes use of a result for 3-HITTING SET [2] leads to a problem
kernel.

Theorem 4. Weighted d-CLUSTER VERTEX DELETION admits a problem ker-
nel containing O(k3) vertices, and it can be found in O(nm) time.

Proof. Since every vertex weight in a weighted d-CLUSTER VERTEX DELETION
instance is at least 1, any solution set has size at most k. Therefore, we can
use the kernelization algorithm for 3-HITTING SET by Abu-Khzam and Fernau
[2] that produces a kernel that contains O(k3) elements. This kernelization
algorithm removes elements for two reasons. First, it removes all elements from
the weighted 3-HITTING SET instance that appear in too many subsets, because
they must belong to any 3-hitting set. Hence, these elements are added to the
solution. Second, it removes elements that do not appear in any subset, because
they must not belong to any minimal 3-hitting set. For details, we refer to [2].

Next, we describe our kernelization algorithm and bound the kernel size and
the running time of the procedure.

Let G be the graph of the weighted d-CLUSTER VERTEX DELETION instance.
First, we enumerate the P3’s of G in O(nm) time (see [Proposition 2)) and create
a 3-HITTING-SET instance in which every P3 corresponds to a subset of size 3.
Since the minimum vertex weight is 1, the solution has size at most k.

Then, we perform all reduction rules of Abu-Khzam and Fernau [2] except
the deletion of elements that do not appear in any subset. Let S be the set of el-
ements after we have performed these reduction rules. Clearly, S contains O(k?)
elements that appear in subsets and an unbounded number of elements that do
not appear in any subset. We then transform the weighted 3-HITTING SET
instance back into a weighted d-CLUSTER VERTEX DELETION instance by cre-
ating the graph G[S]. This graph has O(k?) vertices that appear in induced Ps’s
and an unbounded number of vertices that do not appear in P3’s. The vertices
that do not appear in any induced P3 are part of isolated clusters. In CLUSTER

11
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VERTEX DELETION, we can remove all of these vertices from the graph since
adding these vertices to a CVD set is never optimal. However, in weighted
d-CLUSTER VERTEX DELETION, we might have to add some of these vertices
to the d-CVD set in order to delete surplus clusters. We now describe how we
can remove some of the isolated clusters from the graph without removing any
clusters that we might have to add to the d-CVD set.

Clearly, we either have to delete all vertices of a cluster or none: a d-CVD set
that deletes some but not all vertices of a cluster is non-optimal since we could
reinsert these deleted vertices into the graph without increasing the number
of clusters and obtain a better solution. Furthermore, we cannot delete any
clusters in which the sum of the vertex weights is more than k. Hence, we
can remove each of these clusters from the graph, decreasing d by 1, because
any such cluster is already fixed as one cluster of the final d-cluster graph. All
remaining clusters contain at most k vertices. Clearly, we can delete at most k
clusters. Therefore, we only have to keep the k clusters that have the lowest
weight. All others can be removed without decreasing k, decreasing d by 1 for
each removed isolated cluster. The remaining graph then contains at most k
isolated clusters with at most k vertices each, resulting in O(k?) vertices that
are part of isolated clusters. Together with the O(k3) vertices that are not part
of isolated clusters, the graph then has O(k?) vertices overall. Clearly, all steps
can be performed in O(nm) time. O

The kernelization result implies that d-CLUSTER VERTEX DELETION is
fixed-parameter tractable with respect to the parameter k. A straightforward
approach to solve d-CLUSTER VERTEX DELETION is to apply a search tree al-
gorithm that branches on the different cases to destroy a Ps; by vertex deletion,
deleting a different vertex in each branch. Since the minimum vertex weight is 1,
the parameter is reduced by at least 1 in each search tree branch. Let &’ be the
sum of the weights of the vertices that may still be deleted at a given search tree
node. Branching is performed as long as the graph contains a P and k' > 1.
If ¥ < 1, and the graph still contains a Ps, then we have not found a d-CVD set
of weight at most k£ and we cannot delete further vertices. If otherwise the graph
is P3-free, then it is a cluster graph albeit one that might contain more than d
clusters. Therefore, we delete the cluster of minimum weight until either G is
a d-cluster graph, which means that we have found a solution, or k' < 1, which
means that no solution was found in this search tree branch.

Clearly, this search tree procedure finds a d-CVD set of minimum weight,
since it explores all possibilities to destroy the P3’s of the graph and afterwards
optimally removes surplus clusters. A straightforward combination of search
tree, kernelization and the interleaving technique [30] leads to the following
running time.

Proposition 3. Weighted d-CLUSTER VERTEX DELETION can be solved in
running time O(3F + nm).

In the remainder of this section, we describe three different algorithms that
improve on this trivial search tree algorithm. The first algorithm is a modifi-
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cation of the iterative compression algorithm from and also uses the
parameter k. The second and third algorithm use the combined parameter (d, k)
but are preferable if d is small compared to k.

3.1 An iterative compression algorithm for d-Cluster Ver-
tex Deletion

In the following, we describe how to modify the algorithm from Becfion 2 in
order to ensure that the graph remaining after the removal of the CVD set
comprises at most d clusters. The only part of the algorithm that has to be
modified is the compression routine. The problem that has to be solved by this
compression routine can be formulated as follows:

d-CVD COMPRESSION

Instance: An undirected graph G = (V, E), a vertex weight function
w:V — [1,00), and a vertex set S C V such that G[S] and G\ S are
d-cluster graphs.

Task: Find a vertex set X’ C V' \ S such that G\ X’ is a d-cluster
graph and }_ v, w(z) is minimum.

The main outline of the procedure remains the same, that is, we first perform
data reduction, and subsequently solve the remaining problem with a matching
algorithm. Recall that R := V' \ S denotes the set of vertices that may still be
deleted in order to obtain a d-cluster graph. We can apply Reduction Rules [
and B of the original algorithm, since in these reduction rules we only delete
vertices that appear in a P together with two vertices of S, and hence have to
be deleted in order to destroy this Ps. In contrast, we cannot apply Reduction
Rule Bl since this reduction rule removes isolated clusters from the graph. How-
ever, we might have to delete some of these clusters in order to obtain a graph
comprising at most d clusters.

After performing Reduction Rules [Ml and Bl we divide the vertices of each
cluster in G[R] into equivalence classes according to their neighborhood in S in
the same way as it was done in the algorithm from This situation is
depicted in From these equivalence classes and the clusters in G[S],
we create an auxiliary graph H, in which each vertex represents an equivalence
class, the difference being that now this graph contains isolated vertices, repre-
senting the isolated clusters that were not removed. An example of this graph
is shown in We partition the vertices of H as follows: the set S
in H contains the vertices that correspond to clusters in G[S], the vertices in T’
correspond to sets of vertices in GG that are adjacent to vertices in S, the vertices
in U correspond to sets of vertices in G that are not adjacent to vertices in S,
and the vertices in I correspond to isolated clusters in G. Not deleting a set of
vertices that corresponds to a vertex in U means that we create an additional
cluster. Clearly, if |S|+ |U| + |I| < d, then we always obtain a d-cluster graph,
and hence we can remove the isolated vertices from this auxiliary graph H and
solve the matching problem as in Otherwise, we transform H in or-

13
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(a) A graph after ap- (b) The initial auxiliary (¢) The modified auxil-
plication of Reduction graph H. iary graph H.
Rules [ and &

Figure 4: Example of the compression procedure for 3-CLUSTER VERTEX DELE-
TION.

der to obtain a graph whose maximum weight matching provides a minimum
weight d-CVD set.

Since we cannot delete any vertices from S, we can create at most d’ := d—|5]|
additional clusters. First, we apply a data reduction rule:

Reduction Rule 4. If d' > |U|, then remove the vertex corresponding to the
isolated cluster of mazimum weight from I and set d' :==d' — 1.

Proof of correctness. Even if all clusters corresponding to vertices from U are
not deleted, there is at least one isolated cluster that we do not need to delete,
and it is optimal to not delete the isolated cluster of maximum weight. O

After this reduction rule has been exhaustively applied, we can assume
that d’ < |U]. We now modify the auxiliary graph H as follows:

e Connect each vertex in I with each vertex in U. To each new edge, assign
a weight that equals the weight of the cluster that corresponds to the
vertex in I.

e Add |U|—d' additional vertices to H. Let I’ be the set of these additional
vertices. Connect each vertex in I’ to all vertices in U, and assign a weight
that is larger than the sum of all other weights in H to every new edge.

The goal of these modifications is to ensure that the cluster graph correspond-
ing to the maximum weight matching has at most d clusters. A matching edge
between a vertex from U to a vertex from I models that the cluster correspond-
ing to the vertex of U must be deleted, since we decided to keep the cluster
corresponding to the vertex of I. With the additional vertices I’, we model that
at least |[U| — d’ clusters corresponding to vertices in U must be deleted. In the
following lemma, we prove the correctness of this approach.

Lemma 3. Let H be an auziliary graph constructed as described. A maximum
weight matching of H provides an optimal d-CVD COMPRESSION solution.

14
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Proof. We show that each maximum matching provides a d-CVD solution. The
optimality of the solution can be demonstrated in complete analogy to[Lemma2l

In order to ensure that the resulting graph is a d-cluster graph, the number
of clusters that do not contain vertices in S can be at most d’ = d — |S|. We
have to create an additional cluster whenever a vertex of U is matched via an
edge between T and U, or via an edge between a vertex in I and U. An edge
between a vertex in U and a vertex in I’ does not create an additional cluster.

Each of the |U|—d’ vertices in I’ is matched in a maximum weight matching,
because of our choice of weights. Therefore, at most d’ of the vertices in U are
matched via edges that are not incident to vertices in I’. The matching thus
contains at most d’ edges that create new clusters. Since there were d—d’ clusters
in G[S], the graph corresponding to the matching is a d-cluster graph. O

The modifications that have to be applied to the auxiliary graph can be
performed in O(kS) time, since this graph contains O(k?) vertices. We can thus
bound the running time of the algorithm as in

Theorem 5. Weighted d-CLUSTER VERTEX DELETION can be solved in O(2" -
K 4+ nm) time, and unweighted d-CLUSTER VERTEX DELETION can be solved
in O(2% - k®log k + nm) time.

3.2 Solving d-Cluster Vertex Deletion via reduction to
Vertex Cover

Here, we present an algorithm that solves weighted d-CLUSTER VERTEX DELE-
TION via the computation of minimum weight vertex coversl Compared to the
fixed-parameter tractability result from which is only based on the
parameter k, we now employ the combined parameter (d, k).

The idea is to try all independent sets of size at most d and to solve weighted
d-CLUSTER VERTEX DELETION for the case that these vertices are not deleted
from the graph. Since in a d-cluster graph any set of vertices from different
clusters forms an independent set, at least one of the independent sets of size
at most d must be a set of vertices that remain in the graph.

Suppose that such an independent set D of size at most d is given. We call
the vertices in D permanent. In the following, we describe how to compute the
minimum weight d-CVD set of such a graph; an example is shown in
First, we perform the following reduction rule.

Reduction Rule 5. Delete all vertices from the graph that are not adjacent to
any vertex in the independent set D and all vertices that are adjacent to more
than one vertex in D.

The correctness of Beduction Rule Alis obvious; an example of its application
is given in For each deleted vertex v, we decrease k by w(v). Let G
be a graph with a size-d independent set of permanent vertices after application

5A wertex cover of a graph is a set C of graph vertices such that every graph edge has at
least one endpoint in C.
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XA XI/TZI

(a) The original graph G with two ) After [Reduction Rule 5l
non-adjacent permanent vertices.

I\ N4

(¢) The graph G’ with a vertex (d) The 2-cluster graph after the re-
cover X (marked with circles). moval of X.

Figure 5: Example of the algorithm for 2-CLUSTER VERTEX DELETION when a
size-2 independent set of vertices that cannot be deleted is given. Black vertices
are permanent.

of Reduction Rule 3 All non-permanent vertices of G are adjacent to exactly
one permanent vertex. To produce a cluster graph, we also have to ensure that
all neighbors of a permanent vertex are adjacent, and neighbors of different
permanent vertices are non-adjacent. These two attributes can be encoded
into a graph G’ such that a vertex cover of G’ is a vertex set whose removal
establishes the attributes in G. We construct the graph G’ from G as follows: For
any pair u, v of non-permanent vertices that is adjacent to the same permanent
vertex, we do the following:

e remove the edge {u,v}, if u and v are adjacent;
e insert the edge {u, v}, otherwise.

Furthermore, we remove all permanent vertices. After this, we have obtained G’ (for
an example of this construction see [Figure 5d).

In the following lemma, we show that a vertex cover of G’ is a d-CVD set
of G; an example of this equivalence is shown in Figures bd and

Lemma 4. Let G be a graph with a size-d independent set of permanent vertices
that is reduced with respect to [Reduction Bule A and G’ a graph constructed as
described above. Then, a vertex set X is a vertex cover of G' if and only if X
is a d-CVD set of G.

Proof. Let X be a vertex cover of G’, and let v and v be two non-permanent
vertices in V' \ X. We show that v and v are adjacent in G if and only if they
are neighbors of the same permanent vertex. Since G is reduced with respect
to Reduction Rule A this implies that G\ X is a d-cluster graph.

Clearly, u and v are nonadjacent in G’. If u and v are both adjacent to the
same permanent vertex p in G, then they have to be adjacent in G, because
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of the way we constructed G’. Hence, the neighborhood of any permanent
vertex p € D in G\ X is a clique. Otherwise, if u and v are adjacent to
different permanent vertices in G, then they cannot be adjacent in G, since in
the construction of G’ from G we did not modify any edges between vertices
that are neighbors of different permanent vertices. Hence, there are no edges
between neighbors of different permanent vertices in G \ X. Therefore, G \ X
comprises exactly d clusters, which means that X is a d-CVD set of G.

The same reasoning can be applied to show that a d-CVD set of G that does
not delete any permanent vertices is a vertex cover of G’. o

We now bound the running time of computing a d-CVD set of a graph,
once an independent set of size at most d that may not be deleted is given.
It fundamentally relies on a fixed-parameter algorithm for weighted VERTEX
CoVER [31].

Lemma 5. Let G = (V, E) be a graph and D C V an independent set of size
at most d. A minimum weight d-CVD set of G of weight at most k that does
not delete any vertex v € D can be computed in O(1.40% +n?) time.

Proof. We bound the running time of the algorithm that was described; the
correctness follows from its description.

Applying Reduction Rule[H can be performed in O(n?) time. Constructing G’
also runs in O(n?) time. The computation of minimum weight vertex covers of
weight at most k can be done in O(1.40* + kn) time [31]. Overall, this amounts
to the claimed running time. O

Combining this approach with the kernelization algorithm from Theorem H
we achieve the following running time.

Theorem 6. Weighted d-CLUSTER VERTEX DELETION can be solved in run-
ning time O(1.40% - k3¢ + nm).

Proof. The kernelization algorithm runs in O(nm) time. After kernelization

the graph comprises O(k?) vertices. Hence, there are (k;) = O(k?) possible
choices for independent sets of size d. By we can find a minimum
weight d-CVD set of a graph of size O(k?) in which an independent set D of
size at most d cannot be deleted in O(1.40% + k%) = O(1.40%) time. This is done
for all O(k3?) sets, and the best solution is stored. Clearly, the overall running
time is O(1.40% - k3¢ + nm). a

For the unweighted case, we can apply the currently fastest algorithm for un-
weighted VERTEX COVER by Chen et al. [d] in combination with the size O(k?)
kernel for unweighted 3-HITTING SET, yielding an improved running time.

Theorem 7. Unweighted d-CLUSTER VERTEX DELETION can be solved in Tun-
ning time O(1.28% - k%4 + nm).
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3.3 Combining branching and reduction to Vertex Cover

Clearly, the algorithm from is only feasible for small values of d.
In this section, we describe an algorithm that is useful if neither d nor k is
very small, and combines an improved branching strategy with the algorithm
from

First, we apply the kernelization algorithm from [Theorem 4l Next, we per-
form a search tree algorithm that branches on forbidden subgraphs. For a ver-
tex v in a forbidden subgraph, we have two choices: either we have to delete v,
or v is one of the remaining vertices in the d-cluster graph. If v is deleted, the
combined parameter k + d decreases by w(v) > 1. Explicitly not deleting v
means that we assign a cluster to v. In this case, we call v permanent. If v
does not have any permanent neighbors, then we have assigned a new cluster.
Hence, k + d also decreases by 1.

Let k' be the sum of the weights of the vertices that may still be deleted at a
given search tree node and d’ the number of clusters that may still be assigned.
Before branching, we perform the following data reduction rule.

Reduction Rule 6. If G contains a Ps with two permanent vertices u,v and
one non-permanent vertex w, then delete w from G and set k' := k' — w(w).

Proof of correctness. Since we may not delete any of the two permanent ver-
tices u and v, we have to delete vertex w in order to eliminate the Ps. O

Clearly, if k¥’ < 1, then we cannot delete any vertices and either the graph is
already a d-cluster graph or this particular branch of the search tree is a dead
end. Furthermore, if d’ = 0, then we cannot assign further clusters. This means
that there is an independent set of d permanent vertices. By we
can find a d-CVD set of such a graph in O(1.40% + k%) = O(1.40%) time. In
the following, we describe the branching rules for the case ¥’ > 1 and d’ > 0.
After application of [Reduction Rule 6l every Ps; contains at most one permanent
vertex.

First, we branch on Ps’s that consist of vertices that are not adjacent to
permanent vertices. If such a Ps; does not exist, then we branch on Pj5’s that
contain a permanent vertex u that is not the middle vertex of the Ps. Finally,
we show that if none of the other cases applies, then we can find a minimum
weight d-CVD set of the graph by computing a minimum weight vertex cover.
In the following, we describe the branching rules in detail; each of them is also

shown in

Case 1: There is a P; uvw such that u, v, and w are not adjacent
to permanent vertices. We branch into three cases. In the first case, we
delete u; the parameter k' + d’ decreases by at least 1. In the second case,
we mark u as permanent and delete w; the parameter k' + d’ decreases by at
least 2 (one new assigned cluster and one deleted vertex). In the third case we
mark u and w as permanent and delete v; the parameter k' + d’ decreases by at
least 3 (two new assigned clusters and one deleted vertex).
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(a) Case 1. (b) Case 2.1.
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(c) Case 2.2. (d) Case 2.3.

Figure 6: Branching rules on P3’s that are not adjacent to permanent
vertices (Case 1) and Ps’s that contain one permanent non-middle ver-
tex (Cases 2.1-2.3). Dashed vertices and edges are deleted, black vertices are
permanent.

Case 2: There is a P; uvw such that u is permanent and v and w are
non-permanent. We consider several subcases of this case.

Case 2.1: Vertex w has no permanent neighbors. We branch into two
cases. In the first branch, we delete w; the parameter decreases by at least 1. In
the second branch, we mark w as permanent and thus delete v; the parameter
decreases by at least 2 (one new assigned cluster and one deleted vertex).

Case 2.2: Vertex w has a permanent neighbor z and v (or z) has a
non-permanent neighbor s that is not adjacent to v (or w). Without
loss of generality assume that u has a neighbor s that is not adjacent to v. We
branch into two cases. In the first branch, we delete v; the parameter decreases
by at least 1. In the second branch, we mark v as permanent and may thus
delete s and w; the parameter decreases by at least 2.

Case 2.3: Vertex w has a permanent neighbor z and v (or w) has a
non-permanent neighbor s that is not adjacent to u (or z). Without
loss of generality assume that v has a neighbor s that is not adjacent to u. We
branch into two cases. In the first branch, we delete v; the parameter decreases
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by at least 1. In the second branch, we mark v as permanent and may thus
delete s and w; the parameter decreases by at least 2.

Case 2.4: Otherwise. If none of the other subcases of Case 2 applies, then
the following must hold: Clearly, vertex w has a permanent neighbor z. Oth-
erwise, Case 2.1 would apply. Furthermore, v is adjacent to all non-permanent
neighbors of u, since Case 2.2 does not apply. Also, u is adjacent to all non-
permanent neighbors of v other than w, since Case 2.3 does not apply. Finally,
there is no permanent neighbor of u that is not adjacent to v and vice versa,
since we performed [Reduciion Rule @l Hence, N[v] = N[u] U {w}. Using the
same arguments we can show that N[w] = N[z]U{v}. We delete that vertex of v
and w which has lower weight; no branching takes place. For the correctness,
consider the following: Clearly, we have to delete at least one of v and w. Let v
be the vertex of lower weight of v and w. Suppose that there is a d-CVD set S
that contains w, where w(w) > w(v). In case v € S, we can reinsert w into the
graph without violating the d-cluster property (because w is only adjacent to
neighbors of & and to v). Obviously, the weight of the solution decreases. In
case v ¢ S, we can delete v from the graph and reinsert w into the graph, again
without violating the d-cluster property. Therefore, deleting the vertex that has
lower weight is optimal.

Case 3: Otherwise. The following must hold: Since Case 1 does not ap-
ply, every P; uvw contains at least one vertex that is adjacent to a permanent
vertex. Furthermore, if a P; uwvw contains a permanent vertex, then this per-
manent vertex is v. Otherwise, Case 2 would apply. Therefore, every connected
component either contains a permanent vertex or it is an isolated cluster. Also,
if a non-permanent vertex v is adjacent to a permanent vertex u, then all of v’s
neighbors must be adjacent to uw. Otherwise, there would be a P3 wvw in
which the permanent vertex is not v.

If the graph contains more than d connected components, then we must re-
move isolated clusters to decrease the number of clusters (all other connected
components contain a permanent vertex and thus cannot be completely deleted).
We remove isolated clusters of minimum weight until either &’ < 1 or the graph
contains exactly d connected components. In the first case, we cannot obtain
a d-cluster graph, in the second case, we can mark the remaining isolated clus-
ters as permanent. Then, there is an independent set of permanent vertices of
size at most d and we can thus compute a d-CVD set with weight at most &’

in O(1.40%") time (Cemmad).

Theorem 8. Weighted d-CLUSTER VERTEX DELETION can be solved in run-
ning time O(1.84kt4 4 nm).

Proof. We prove the theorem by bounding the running time of the described
algorithm. The correctness of the algorithm follows from the given description.

As shown in [Theorem 4 kernelization can be done in O(nm) time. We
bound the size of the search tree by analyzing the branching vectors and their

20



TO APPEAR IN THEORY OF COMPUTING SYSTEMS, 2008

branching number; for details on this type of analysis, we refer to [29, Chapter
8]. In the search tree, the branching vector with the largest branching number
is (1,2, 3) from Case 1. The branching number of this vector is 1.84. Hence, the
search tree has size O(1.845%?). The computation of minimum weight vertex
covers is also performed by a search tree procedure, whose largest branching
number is 1.40. Hence, applying the fixed-parameter algorithm for weighted
VERTEX COVER in case d’ = 0 does not increase the worst-case search tree size.

Every step at a search tree node can be computed in polynomial time. By
interleaving kernelization and branching, the running time for the search tree
can be improved from O(1.84k*< . poly(k)) to O(1.84%+%) [3(]. Together with
the time needed for the kernelization (O(nm)), we arrive at the claimed overall
running time bound. O

4 Outlook

It is open to improve the trivial factor-3 approximation for CLUSTER VERTEX
DELETION. Cai et al. [§] improved the approximation factor for (unweighted)
FEEDBACK VERTEX SET in tournaments, which is also characterized by a 3-
vertex forbidden subgraph, from 3 to 2.5; perhaps similar techniques are appli-
cable here. Moreover, the exponential upper bounds for our search-tree based
algorithms should be improvable. More importantly, for the unweighted case of
CLUSTER EDITING, O(k)-vertex problem kernels are known [13, 22], whereas
correspondingly for CLUSTER VERTEX DELETION only an O(k?)-vertex kernel
is known. Also, improving the O(k®)-vertex problem kernel for the weighted
case would be desirable. Further problem variants, for example a variation
of d-CLUSTER VERTEX DELETION that specifies the exact number of desired
clusters could be practically relevant. While the algorithms from Subsections
and can be applied to this problem, the method of iterative compression is
not applicable, since the property of comprising a fixed number of clusters is
not hereditary. Finally, all our results are worst-case estimates. Practical tests
based on algorithm engineering seem promising.
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