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To identify linear signaling pathways, Scott et al. [RECOMB, 2005] recently proposed to extract paths
with high interaction probabilities from protein interaction networks. They used an algorithmic tech-
nique known as color-coding to solve this NP-hard problem; their implementation is capable of finding
biologically meaningful pathways of length up to 10 proteins within hours. In this work, we give var-
ious novel algorithmic improvements for color-coding, both from a worst-case perspective as well as
under practical considerations. Experiments on the interaction networks of yeast and fruit fly as well
as a testbed of structurally comparable random networks demonstrate a speedup of the algorithm by
orders of magnitude. This allows more complex and larger structures to be identified in reasonable
time; finding paths of length up to 13 proteins can even be donein seconds and thus allows for an
interactive exploration and evaluation of pathway candidates.

1. Introduction

Motivation. Accompanying the availability of genome-scale protein–protein interaction
data, various approaches have been proposed to datamine thecorresponding networksa for
biologically meaningful substructures such as dense groups of interacting proteins3,6,9 and
loop structures2. A special role—with respect to both biological meaning as well as al-
gorithmic tractability—is played by the most simple structures, that is,linear pathways.
These are easy to understand and analyze and, as demonstrated by Ideker et al.8 for the
yeast galactose metabolism, they can serve as a seed structure for experimental investiga-
tion of more complex mechanisms. Initiated by Steffen et al.12, the automated discovery
of linear pathways in protein interaction networks is hencea promising undertaking.

Unfortunately, finding linear pathways—that is, paths in a graph where each vertex oc-
curs at most once—is an NP-hard problem5. However, a randomized algorithmic technique
called “color-coding”1 is known to solve this problem efficiently for small path lengths.
(The details of color-coding are explained in Section 2). Consequently, Scott et al.10 re-
cently proposed to employ color-coding to datamine proteininteraction networks for sig-
naling pathways. They were able to demonstrate that the color-coding approach is indeed
capable of identifying biologically meaningful pathways.Their implementation is limited,
however, to path lengths of around10 vertices and, moreover, it requires some hours of

aWe use the term “network” for fields outside mathematics and computer science and “graph” for discussing
algorithmic aspects.

1



October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in apbc160

runtime for these path lengths. In this work, we give variousnovel improvements for color-
coding, both from a worst-case perspective as well as under practical considerations. This
allows us to find pathways consisting of more than 20 verticesin some hours and the task
of finding pathways of length 10 can be accomplished in a few seconds.

Structure of this work. The color-coding technique is explained in Section 2. Our al-
gorithmic improvements and data structures are discussed in Section 3. The improved
color-coding algorithm has been implemented in C++. Section 4 discusses experimental
results that were obtained by using our implementation on theS. cerevisiae(yeast) interac-
tion network of Scott et al.10, theD. melanogaster(fruit fly) interaction network of Giot et
al.7, and random networks that are structurally similar to protein interaction networks. Our
experiments demonstrate that the algorithmic improvements proposed in this work facili-
tate the detection of larger, more complex pathway candidates and opens the possibility for
interactive exploration of smaller structures.

The source code of our color-coding implementation can be downloaded as free soft-
ware fromhttp://theinf1.informatik.uni-jena.de/colorcoding/.

2. The Color-Coding Technique

We model protein interaction networks as undirected graphswhere each vertex is a protein
and each edge is weighted by the negative logarithm of the interaction probability for the
two proteins it connects. Following Scott et al.10, we formalize the problem of pathway
candidate detection to a NP-hard problem called MINIMUM -WEIGHT PATH.

M INIMUM -WEIGHT PATH

Input: An undirected edge-weighted graphG = (V, E) with n := |V | andm :=

|E| and an integerk.
Task: Find a length-k path inG that minimizes the sum over its edge weights.

Color-Coding. Alon et al.1 proposed a technique calledcolor-codingto solve MINIMUM -
WEIGHT PATH. The idea is to randomly color the vertices in the input graphwith k colorsb

and then search forcolorful paths, that is, paths where no color occurs twice. Given a fixed
coloring of vertices, finding the minimum-weight colorful path is accomplished by dynamic
programming: Assume that for somei < k we have computed a valueW (v, S) for every
vertexv ∈ V and cardinality-i subsetS of vertex colors; this value denotes the minimum
weight of a path that uses every color inS exactly once and ends inv. Clearly, this path
is simple because no color is used more than once. We can now use this to compute the
valuesW (v, S) for all cardinality-(i + 1) subsetsS and verticesv ∈ V because a colorful
length-(i+ 1) path that ends in a vertexv ∈ V can be composed of a colorful length-i path
that does not use the color ofv and ends in a neighbor ofv. More precisely, we let

W (v, S) = min
e={u,v}∈E

(

W (u, S \ {color(v)}) + w(e)
)

. (1)

bSection 3.1 shows that using onlyk colors is suboptimal from a runtime perspective.
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Figure 1. Example for solving MINIMUM -WEIGHT PATH using the color-coding technique. Using Equation (1)
a new table entry (right) is calculated using two already known entries (left and middle).

as exemplified in Figure 1.
It is easy to verify that the dynamic programming takesO(2km) time.c Whenever

the minimum-weight length-k path in the input graph is colored withk colors (i.e., every
vertex has a different color), then it is found. The problem,of course, is that the coloring of
the input graph is random and hence many coloringtrials have to be performed to ensure
that the minimum-weight path is found with a high probability. While the result is only
optimal with a (user-specifiable) probability, setting theerror probabilityε to say,0.1%, is
likely to be acceptable in practice (even more so because only the logarithm of the error
probability goes into the overall runtime and hence, very low error probabilities are efficient
to achieve).

A particularly appealing aspect of the color-coding methodis that it can be easily
adapted to many practically relevant variations of the problem formulation: For exam-
ple, the set of vertices where a path can start and end can be restricted (such as to force
it to start in a membrane protein and end in a transcription factor10). Also, recently it has
been demonstrated that pathway queries to a network, that is, the task of finding a path-
way in a network that is as similar as possible to a query pathway, can be handled with
color-coding11.

Unless otherwise noted, we use the following variant of MINIMUM -WEIGHT PATH

that matches the experiments by Scott et al.10: With an error probability ofε = 0.1%, we
seek 100 minimum-weight paths which must differ from each other in at least 30% of the
vertices (to ensure that they are not only small modifications of the global minimum-weight
path).

3. Improving the Efficiency of Color-Coding

This section presents several algorithmic improvements for color-coding that lead to large
savings in time and memory consumption. Whereas the improvement in Section 3.2 is of
heuristic nature, the improvements in Sections 3.1 and 3.3 make color-coding also more
efficient in a worst-case scenario. Note that these improvements are generally applicable to
color-coding and not restricted to the protein interactionnetwork scenario.

cLiterature usually states the weaker boundO(2kkm) that is obtained when representing the setsS explicitly
instead of using a table.
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3.1. Speedup by Increasing the Number of Colors

Clearly, we need at leastk colors when trying to find a length-k path using the color-coding
technique. Increasing the number of used colors beyond thisleads to a tradeoff: Fewer
trials have to be performed to ensure the same error bound, yet each trial takes longer.
More specifically, assume that in order to detect a path of lengthk we are using the color-
coding technique withk + x colors for some positive integerx. Then the probabilityPc of
a path in the input graph being colorful becomes

Pc =

(

k+x
k

)

· k!

(k + x)k
=

(k + x)!

x!(k + x)k
=

k
∏

i=1

i + x

k + x
(2)

because there are(k + x)k ways to colork vertices withk+x colors and
(

k+x
k

)

·k! of these
use mutually different colors. The overall runtimetA of the algorithm to ensure an error
probability of at mostε is a product of two factors, namely the runtime of a single trial and
the number of trialst(ε) to perform. As discussed in Section 2, the worst-case runtime for
each trial isO(2k+x · m) and we obtain

tA ≤ t(ε) · O(2k+x · m) =

⌈

ln ε

ln(1 − Pc)

⌉

· O(2k+x · m). (3)

We should choosex such that the right-hand side of (3) is minimized. All works we are
aware of usex = 0 for the analysis, which yieldstA = O(| ln ε| · ek · 2km) = O(| ln ε| ·
5.44km). While this choice can be argued for with respect to memory requirements for a
trial (after all, these are a major bottleneck for dynamic programming algorithms), it is not
optimal concerningtA:

Theorem 3.1. The worst-case runtime of color-coding forM INIMUM -WEIGHT PATH

with 1.3k colors and error probabilityε is O(| ln ε| · 4.32km).

Proof. To estimate the factorials in Equation (2), we use the doubleinequality
√

2πnn+1/2 · exp(−n + 1/(12n + 1)) < n! <
√

2πnn+1/2 · exp(−n + 1/(12n))

derived from Stirling’s approximation. This yields

Pc ≥
√

2π(k + x)k+x+1/2 · exp
(

−k − x + 1

12k+12x+1

)

√
2πxx+1/2 · exp

(

−x + 1

12x

) · (k + x)−k

=

(

k

x
+ 1

)x+1/2

· exp

(

−k − 1

12x
+

1

12k + 12x + 1

)

.

Settingx := 0.3k and using the inequalityln(1 − Pc) < −Pc (which is valid because the
probabilityPc satisfies0 < Pc < 1) we obtain

tA ≤
⌈

ln ε

ln(1 − Pc)

⌉

· O(2k+x · m) <

(

ln ε

−Pc
+ 1

)

· O(2k+x · m)

4



October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in apbc160

6 8 10 12 14 16 18 20 22
number of colors

1

101

102

103

ru
nn

in
g 

tim
e 

[s
ec

on
ds

]

k=5
k=6
k=7k=8
k=9
k=10

k=11

k=12

Figure 2. Runtimes for finding the 20 minimum-weight paths ofdifferent lengths in the yeast protein interaction
network of Scott et al.10 . No lower bound function (Section 3.2) was used. The highlighted point of each curve
marks the optimal choice when assuming worst-case trial runtime.

where

1

Pc
< 4.33−0.3k−1/2 · exp

(

k +
1

12x

)

= O

(

ek

1.552k

)

= O(1.752k)

which finally yields

tA ≤ | ln ε| · (O(1.752k) + 1) · O(21.3km) = O(| ln ε| · 4.32km)

as claimed by the theorem.

Numerical evaluation suggests that settingx close to0.3k (whether to round up or down
should be determined numerically for a concretek) as done in the theorem is actually an
optimal choice from a runtime perspective.

For a practical implementation, while we could fix the numberof colors at the worst-
case optimumk + x, it is most likely beneficial to choosex even larger, because various
algorithmic tweaks and the underlying graph structure can keep the runtime of a trial sig-
nificantly below the worst-case estimate. This in turn causes the increase in runtime per
trial by choosing a largerx to be even more overcompensated by a decrease in the total
number of trials needed, as is demonstrated in Figure 2. In fact, for a small path length of
8–10 we can choose the number of colors to be the maximum our implementation allows
(that is, 31), and get by with a very small number of trials (≈15–30). (Based on such ob-
servations, our implementation uses an adaptive approach to the number of colors, starting
with the maximum of 31 and decreasing this in case a trial runsout of memory.)

3.2. Speedup by Lower Bounds and Cache Preheating

In a color-coding trial, every vertex carries entries for upto 2k+x color sets, each of them
representing a partial colorful path with a certain weight.Because each entry may get
expanded to an exponentially large collection of new entries, pruning even a small fraction
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Figure 3. Runtime comparison with heuristic evaluation functions for different values ofd (seeking the
20 lowest-weight paths in the yeast network of Scott et al.10 that differ in at least 30% of participating vertices).

of them can lead to a significant speedup. The pruning strategy that we employ makes
use of the fact that we are only looking for a fixed number of minimum-weight paths. As
soon as we have found this number of candidates, we can alwaysremove entries where the
weight of the corresponding partial path is certain to exceed the weight of the worst known
path in the current collection of paths when completed.

Consider an entryW (u, S) corresponding to some partial path. To obtain a length-k

path, we need to append anotherk − |S| edges, and so a lower bound for the total weight
of a length-k path expanded from this entry isW (u, S) + (k − |S|)wmin, wherewmin is the
minimum weight of any edge in the graph. We improve upon this simple bound by dividing
the path length left not into single edges, but short segments ofd edges, calculating a lower
bound separately for each segment, and summing up these bounds.

We prepare the lower bound calculation in a preprocessing phase by dynamic program-
ming on the uncolored graph. Clearly, there is a trade-off between the time invested in the
preprocessing (depending ond) and the time saved in the main algorithm. For the yeast
network of Scott et al.10, settingd = 2 seems to be a good choice with an additional sec-
ond of preprocessing time. Ford = 3, the preprocessing time increases to38 seconds, an
amount of time that is only recovered when searching for paths of length at least19 (see
Figure 3).

Using lower bounds is only effective once we have already found as many paths as we
are looking for. Therefore, it is important to quickly find some low-weight paths early in
the process. We achieve this acquisition of lower bounds by prepending a number of trials
with a thinned-out graph, that is, for some0 < t < 1, we consider a graph that contains
only thet|E| lightest edges of the input graph. (Especially in database applications, similar
techniques are known as “preheating the cache.”) Trials fora certain value oft are repeated
with different random colorings until the lower bound does not improve any more. By
default, t is increased in steps of1/10; should we run out of memory, this step size is
halved. This allows to successfully complete trials in the thinned out graphs, making trials
feasible on the original graphs by providing them with powerful bounds for pruning.
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Table 1. Basic properties of the network instancesYEAST (Scott el al.10) and DROSOPHILA

(Giot et al.7). The clustering coefficientis the probability that{u, v} ∈ E for u, v, x ∈ V

with {u, x} ∈ E and{x, v} ∈ E.

vertices edges clustering coefficient average degree maximum degree

YEAST 4 389 14 319 0.067 6.5 237
DROSOPHILA 7 009 20 440 0.030 5.8 175

3.3. Efficient Storage of Color Sets

Since one is not only interested in the weight of a solution, but in the vertices (that is,
proteins) that it consists of, it is common to not only store the weight of a partial colorful
path in Equation (1) but also a concrete sequence of verticesthat realizes this weight.
This accounts for the bulk of the memory requirement of a color-coding implementation
becausekdlog |V |e bits per stored path are required. We propose to save memory here by
noting that it suffices to store only the order in which the colors appear on a path: after
completing a color set at some vertexu, the path can be recovered by running a shortest
path algorithm (e.g., Dijkstra’s algorithm4) for the source vertexu while allowing it to only
travel edges that match the color order. This reduces the memory cost per entry tokdlog ke
bits, which, for our application, amounts to a saving factorof about2–4. Because of the
resulting increase in computer cache effectiveness, this usually also leads to a speedup
except when either short path lengths are used (where memoryis not an issue anyway) or
when many solution paths are found and have to be reconstructed.

As to the data structure for the color sets at each vertex, they are managed as a Patricia
tree, that is, a compact representation of a radix tree4 where any node which is an only
child is merged with its parent. A color set is represented asa bit string of fixed length.
The Patricia tree allows for very quick insertions and iterations with a moderate memory
overhead of, e.g., 12 bytes per color set on a 32-bit system.

4. Experimental Results

Method and Results. We have implemented the color-coding technique with the improve-
ments described in the last section. The source code of the program is available from
http://theinf1.informatik.uni-jena.de/colorcoding/; it is written in
the C++ programming language and consists of approximately1200 lines of code. The
testing machine is an AMD Athlon 64 3400+ with 2.4 GHz, 512 KB cache, and 1 GB main
memory running under the Debian GNU/Linux 3.1 operating system. The program was
compiled with the GNU g++ 4.2 compiler using the options “-O3-march=athlon”.

The real-world network instances used for speed measurements were theSac-
charomyces cerevisiaeinteraction network used by Scott el al.10 and theDrosophila
melanogasterinteraction network described by Giot et al.7. Some properties of these net-
works, which we will refer to asYEAST andDROSOPHILA, are summarized in Table 1.

To explore the sensitivity of the runtime to various graph parameters (namely, the num-
ber of vertices, the clustering coefficient, the degree distribution, and the distribution of
edge weights), the implementation was also run on a testbed of random graph instances
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Figure 4. (a) Runtimes forYEAST as reported by Scott et al.10 (adjusted for speed difference of the testing
machines) and measured with our implementation. In both cases, paths must start at a membrane protein, and end
at a transcription factor. Memory requirements were, e. g.,3 MB for k = 10 and 242 MB fork = 21.
(b) Comparison of the runtimes of our implementation when applied toYEAST andDROSOPHILAfor various path
lengths, seeking after either 20 or 100 minimum-weight paths that mutually differ in at least 30% of their vertices.
There were no restrictions as to the sets of start and end vertices.

that were generated with the algorithm described by Volz13. The results of all experiments
and details as to the experimental setting are given in Figures 4 and 5.

Note that Scott et al.10 obtained their runtimes on a dual 3.0 GHz Intel Xeon processor
with 4 GB main memory. To make their runtimes comparable withours, Figure 4 does
not report their original times here, but divides them by1.2 (which is a very conservative
estimate in favor of Scott et al.10 that most likely overestimates the speed of our machine).

Discussion. Compared to the (machine-speed adjusted) runtimes from Scott et al.10, our
implementation is faster by a factor of 10 to 2 000 onYEAST (see Figure 4a). Scott et al.
discuss findings for paths up to a length of 10 which they were able to find in about three
hours. These can be found within seconds by our implementation, allowing for interactive
queries and displays. The range of feasible path lengths is more than doubled.

Figure 4b shows that the runtimes for bothYEAST andDROSOPHILAare roughly equal.
The only exception is the search for the best 100 paths withinYEAST which not only takes
unexpectedly long but also displays step-like structures.Most likely, these two phenomena
can be attributed to the fact that certain path lengths allowfor much fewer well-scoring
paths than others inYEAST, causing the lower-bound heuristic to be less effective. Fig-
ure 4b also demonstrates that a major factor in the runtime isactually the number of paths
that is sought after. This is because a larger number of pathsworsens the lower bound of
the heuristic which cannot cut off as many partial solutionsand maintaining the list of paths
and checking the “at least 30% of vertices must differ” criterion becomes more involved.

Figures 5a, 5b, and 5d show that the runtime of the color-coding algorithm appears
to be somewhat insensitive to the size of the graph (increasing linearly with increasing
graph size) as well as the clustering coefficient and the distribution of edge weights. The
somewhat unexpectedly high runtimes for graphs with less than 500 vertices in Figure 5a
are explained by the fact that the number of length-10 and length-15 paths in these networks
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Figure 5. Runtime for our color-coding implementation on random networks, seeking after 20 minimum-weight
paths. Unless a parameter is the variable of a measurement, the following default values are used (we have
empirically found them to result in networks that are quite similar to YEAST): 4 000 vertices; degree distribution
is a power law with exponential cutoff, that is, the fractionpk of vertices with degreek satisfiespk ∼ kα ·
e−k/1.3 · e−45/k ; the default value forα is −1.6; edge weights are distributed as inYEAST; the clustering
coefficient is0.1. The data shown reports the average runtime over five runs each. (a) Dependency on the number
of vertices.(b) Dependency on the clustering coefficient.(c) Dependency on the parameterα of the power law
distribution. (d) Dependency on the distribution of edge weights for three different distributions: A uniform
[0, 1]-distribution, the distribution ofYEAST, and the distribution ofYEAST under consideration of vertex degree.

is very low, causing the heuristic lower bounds to be rather ineffective (this also explains
why the effect is worse fork = 15 than it is fork = 10).

Figure 5c shows that the algorithm is generally faster when the vertex degrees are
unevenly distributed. This comes as no surprise because forlow-degree vertices, fewer
color sets have to be maintained in general and the heuristiclower bounds are often bet-
ter. Fork = 15, two points in the curve require further explanation: First, the drop-off
in running time forα < −3 is explained by the random graph “disintegrating” into small
components. Second, the increased runtime for−3 ≤ α ≤ −2 can most is most likely due
to a decrease in the total number of length-15 paths as compared to larger values ofα.

5. Conclusion

We have given various algorithmic improvements that enablethe color-coding technique
as a tool both for fast exploration of small pathway candidates as well as for finding larger
structures than previously possible. The protein interaction networks of yeast and fruit fly
are the so-far most extensively analyzed and understood; asmore high-quality data be-
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comes available in the future, it would be interesting to further investigate the practical
application of color-coding beyond the detection of linearpathways. Most of the improve-
ments we have given are also useful for detecting other structures that can also be handled
with color-coding such as cycles and trees. Finally, we planfurther research into the ap-
plicability of color-coding to querying pathways in a network (as recently done by Shlomi
et al.11) and are working on extending our color-coding implementation to a user-friendly
tool for pathway candidate detection.
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