October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in pbca60

ALGORITHM ENGINEERING FOR COLOR-CODING TO FACILITATE
SIGNALING PATHWAY DETECTION

FALK HUFFNER, SEBASTIAN WERNICKE, AND THOMAS ZICHNER

Institut fUr Informatik, Friedrich-Schiller-Universitt Jena
Ernst-Abbe-Platz 2, D-07743 Jena, Germany
E-mail: {hueffner,wernicke,ti@minet.uni-jena.de

To identify linear signaling pathways, Scott et al §RomB, 2005] recently proposed to extract paths
with high interaction probabilities from protein interiat networks. They used an algorithmic tech-
nigue known as color-coding to solve this NP-hard probldrairimplementation is capable of finding
biologically meaningful pathways of length up to 10 progewithin hours. In this work, we give var-
ious novel algorithmic improvements for color-coding, bfftom a worst-case perspective as well as
under practical considerations. Experiments on the iotiera networks of yeast and fruit fly as well
as a testbed of structurally comparable random networkodstrate a speedup of the algorithm by
orders of magnitude. This allows more complex and largercaires to be identified in reasonable
time; finding paths of length up to 13 proteins can even be dorseconds and thus allows for an
interactive exploration and evaluation of pathway canisla

1. Introduction

Motivation. Accompanying the availability of genome-scale proteimt@in interaction
data, various approaches have been proposed to datamic@rtesponding networksor
biologically meaningful substructures such as dense grofimteracting proteiris®* and
loop structured A special role—with respect to both biological meaning adlas al-
gorithmic tractability—is played by the most simple stuwrets, that isjinear pathways.
These are easy to understand and analyze and, as demahbirdtieker et af. for the
yeast galactose metabolism, they can serve as a seed mrigtexperimental investiga-
tion of more complex mechanisms. Initiated by Steffen e athe automated discovery
of linear pathways in protein interaction networks is heageomising undertaking.
Unfortunately, finding linear pathways—that is, paths irrapdp where each vertex oc-
curs at most once—is an NP-hard probfeidowever, a randomized algorithmic technique
called “color-coding® is known to solve this problem efficiently for small path Ié&mg
(The details of color-coding are explained in Section 2) nssmuently, Scott et af. re-
cently proposed to employ color-coding to datamine proitei@raction networks for sig-
naling pathways. They were able to demonstrate that the-colding approach is indeed
capable of identifying biologically meaningful pathway$eir implementation is limited,
however, to path lengths of around vertices and, moreover, it requires some hours of

a\We use the term “network” for fields outside mathematics ammhputer science and “graph” for discussing
algorithmic aspects.

October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in pbca60

runtime for these path lengths. In this work, we give varioogel improvements for color-

coding, both from a worst-case perspective as well as urmdetipal considerations. This
allows us to find pathways consisting of more than 20 vertics®me hours and the task
of finding pathways of length 10 can be accomplished in a faesgs.

Structure of this work. The color-coding technique is explained in Section 2. Our al
gorithmic improvements and data structures are discuss&ection 3. The improved
color-coding algorithm has been implemented in C++. Sadliaiscusses experimental
results that were obtained by using our implementation eistiterevisiagyeast) interac-
tion network of Scott et al?, theD. melanogaste(fruit fly) interaction network of Giot et
al.”, and random networks that are structurally similar to prateteraction networks. Our
experiments demonstrate that the algorithmic improvempraposed in this work facili-
tate the detection of larger, more complex pathway canegitd opens the possibility for
interactive exploration of smaller structures.

The source code of our color-coding implementation can lventttaded as free soft-
ware fromht t p: // t hei nf 1. i nf or mati k. uni - j ena. de/ col or codi ng/ .

2. The Color-Coding Technique

We model protein interaction networks as undirected gragtese each vertex is a protein
and each edge is weighted by the negative logarithm of tleeaotion probability for the
two proteins it connects. Following Scott et'8).we formalize the problem of pathway
candidate detection to a NP-hard problem callediiMum -WEIGHT PATH.

MINIMUM -WEIGHT PATH

Input: An undirected edge-weighted gragh= (V, E) with n := |V| andm :=
|E| and an integek.

Task: Find a lengthk path inG that minimizes the sum over its edge weights.

Color-Coding. Alon et al! proposed a technique calledlor-codingto solve MNIMUM -
WEIGHT PATH. The idea is to randomly color the vertices in the input grajih & colors®
and then search faolorful paths, that is, paths where no color occurs twice. Given d fixe
coloring of vertices, finding the minimum-weight colorfidth is accomplished by dynamic
programming: Assume that for some< k& we have computed a valu& (v, S) for every
vertexv € V and cardinality: subsetS of vertex colors; this value denotes the minimum
weight of a path that uses every colorSnexactly once and ends in Clearly, this path
is simple because no color is used more than once. We can rethisgo compute the
valuesiV (v, S) for all cardinality{i + 1) subsetsS and vertices) € V' because a colorful
length{i + 1) path that ends in a vertexc V' can be composed of a colorful lengtipath
that does not use the color ofand ends in a neighbor of More precisely, we let
W(v,S)= min (W(u, S\ {color(v)}) + w(e)).)

e={u,v}€E

bSection 3.1 shows that using orftycolors is suboptimal from a runtime perspective.

October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in pbca60

Vg U1

VU3

W(2,{@,@®,0}) =5 W3, {@,®0})=3 W, {0 e 0,0} =
min{W (v2, { @, @, O}) + 2,
W(v3,{@,0,0}) +3} =6

Figure 1. Example for solving MiiMuM -WEIGHT PATH using the color-coding technique. Using Equation (1)
a new table entry (right) is calculated using two alreadyvkmentries (left and middle).

as exemplified in Figure 1.

It is easy to verify that the dynamic programming take@*m) time Whenever
the minimum-weight length path in the input graph is colored withcolors (i.e., every
vertex has a different color), then it is found. The problefrgourse, is that the coloring of
the input graph is random and hence many colotitads have to be performed to ensure
that the minimum-weight path is found with a high probabilitvhile the result is only
optimal with a (user-specifiable) probability, setting #reor probabilitye to say,0.1%, is
likely to be acceptable in practice (even more so becausetballogarithm of the error
probability goes into the overall runtime and hence, vewyédoror probabilities are efficient
to achieve).

A particularly appealing aspect of the color-coding metli®dhat it can be easily
adapted to many practically relevant variations of the fgwobformulation: For exam-
ple, the set of vertices where a path can start and end carstietedd (such as to force
it to start in a membrane protein and end in a transcriptictoff). Also, recently it has
been demonstrated that pathway queries to a network, thitteigask of finding a path-
way in a network that is as similar as possible to a query payhwean be handled with
color-coding!.

Unless otherwise noted, we use the following variant afNMiUM -WEIGHT PATH
that matches the experiments by Scott é’aWith an error probability of = 0.1%, we
seek 100 minimum-weight paths which must differ from eadteoin at least 30% of the
vertices (to ensure that they are not only small modificatimfrihe global minimum-weight
path).

3. Improving the Efficiency of Color-Coding

This section presents several algorithmic improvememtsdtor-coding that lead to large
savings in time and memory consumption. Whereas the imprenéin Section 3.2 is of

heuristic nature, the improvements in Sections 3.1 and &u8eneolor-coding also more
efficient in a worst-case scenario. Note that these imprevesrare generally applicable to
color-coding and not restricted to the protein interactietwork scenario.

°Literature usually states the weaker boud@®*km) that is obtained when representing the sgtsxplicitly
instead of using a table.

October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in pbca60

3.1. Speedup by Increasing the Number of Colors

Clearly, we need at leaktcolors when trying to find a lengthpath using the color-coding
technique. Increasing the number of used colors beyondehds to a tradeoff: Fewer
trials have to be performed to ensure the same error bounicdkaph trial takes longer.
More specifically, assume that in order to detect a path aftteh we are using the color-
coding technique witlk + z colors for some positive integet Then the probability?, of
a path in the input graph being colorful becomes

)k (k+a)! frite

p— -k - - 2
(k+a) alk+a)b 1lk+a @

because there afté + z)* ways to coloik vertices withk + colors anc(k;gm) -k! of these
use mutually different colors. The overall runtimg of the algorithm to ensure an error
probability of at most is a product of two factors, namely the runtime of a singl& &ind
the number of trialg(¢) to perform. As discussed in Section 2, the worst-case rfim
each trial isO(2¥+* . m) and we obtain

Ine

ta <t(e) O m) = [m

] L0287). (3)

We should choose such that the right-hand side of (3) is minimized. All worke are
aware of user = 0 for the analysis, which yieldsy = O(|In¢| - €* - 28m) = O(|In¢| -
5.44Fm). While this choice can be argued for with respect to memagyirements for a
trial (after all, these are a major bottleneck for dynamimggsamming algorithms), it is not
optimal concerning 4:

Theorem 3.1. The worst-case runtime of color-coding fédINIMUM -WEIGHT PATH
with 1.3k colors and error probability is O(|In €| - 4.32%m).

Proof. To estimate the factorials in Equation (2), we use the domlglguality
V22 exp(—n 4+ 1/(12n + 1)) < n! < V2rn" /2 exp(—n + 1/(12n))

derived from Stirling’s approximation. This yields

. V2r(k + 2)F+T1/2 L exp (—k —r+ 71%1&%“)
‘= V2ra#tl/2 exp (—z 4+ 13-)

k +1 z+1/2 B} 1 . 1
= —_ . X J— _—— R .
z eXp 122 ' 12k + 122+ 1

Settingz := 0.3k and using the inequalitin(1 — P.) < —P. (which is valid because the
probability P. satisfied) < P. < 1) we obtain

(k+x)7F

o= [T o« (B2 41) oo

October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in pbca60

10° 4 3
)] i
e}

g 1 r
8 10% o 3
92, E E
[}] n
£ 1 k=12 |
210" 4 k=11 £
£ 3 g
S 1 k=10 [
14 Egg E
k=6 F
1 j:t:tﬁt:i:‘:f:’:‘:tkﬂ £

T

T T T T T T T T
6 8 10 12 14 16 18 20 22
number of colors

Figure 2. Runtimes for finding the 20 minimum-weight pathslifferent lengths in the yeast protein interaction
network of Scott et al®. No lower bound function (Section 3.2) was used. The higittig point of each curve
marks the optimal choice when assuming worst-case tridimen

where

1 1 et
4337 03k—1/2 = —) =0(1.752F
o) < 4.33 exp | k+ o 0O 1552k O(1.752%)

which finally yields
ta < |lnel- (O(1.752%) + 1) - O(2"*m) = O(|Ine| - 4.32%m)

as claimed by the theorem. |

Numerical evaluation suggests that settingjose ta0.3%k (whether to round up or down
should be determined numerically for a concriteas done in the theorem is actually an
optimal choice from a runtime perspective.

For a practical implementation, while we could fix the numbkcolors at the worst-
case optimunk + z, it is most likely beneficial to choose even larger, because various
algorithmic tweaks and the underlying graph structure aspkhe runtime of a trial sig-
nificantly below the worst-case estimate. This in turn cauke increase in runtime per
trial by choosing a larger to be even more overcompensated by a decrease in the total
number of trials needed, as is demonstrated in Figure 2.cinffar a small path length of
8-10 we can choose the number of colors to be the maximum quleimentation allows
(that is, 31), and get by with a very small number of triaisl 6—30). (Based on such ob-
servations, our implementation uses an adaptive approabtle number of colors, starting
with the maximum of 31 and decreasing this in case a trial cun®f memory.)

3.2. Speedup by Lower Bounds and Cache Preheating

In a color-coding trial, every vertex carries entries forta@*+* color sets, each of them
representing a partial colorful path with a certain weigBecause each entry may get
expanded to an exponentially large collection of new estpeuning even a small fraction

October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in pbca60

| | |
1 + no heuristic [
- 10* § o d=1 3
2 1od=2 i
8104 L
9 70d=3
é’ R
‘€ 10* -4 L
c 3
2 3
14 4 E
T T

T T T T T T
4 6 8 10 12 14 16 18 20
path length

Figure 3. Runtime comparison with heuristic evaluationctions for different values ofl (seeking the
20 lowest-weight paths in the yeast network of Scott éf'ahat differ in at least 30% of participating vertices).

of them can lead to a significant speedup. The pruning sirdtesy we employ makes
use of the fact that we are only looking for a fixed number ofimum-weight paths. As

soon as we have found this number of candidates, we can atemyse entries where the
weight of the corresponding partial path is certain to eddbe weight of the worst known
path in the current collection of paths when completed.

Consider an entry¥/ (u, S) corresponding to some partial path. To obtain a lerigth-
path, we need to append anottier |S| edges, and so a lower bound for the total weight
of a length% path expanded from this entry i (u, S) + (k — |'S|)wmin, Wherewmin is the
minimum weight of any edge in the graph. We improve upon tinigpge bound by dividing
the path length left not into single edges, but short segsnafiat edges, calculating a lower
bound separately for each segment, and summing up thesd$ioun

We prepare the lower bound calculation in a preprocessiagghy dynamic program-
ming on the uncolored graph. Clearly, there is a trade-dff’lben the time invested in the
preprocessing (depending dy and the time saved in the main algorithm. For the yeast
network of Scott et al?, settingd = 2 seems to be a good choice with an additional sec-
ond of preprocessing time. Fdr= 3, the preprocessing time increases&seconds, an
amount of time that is only recovered when searching forpafHength at least9 (see
Figure 3).

Using lower bounds is only effective once we have alreadydoas many paths as we
are looking for. Therefore, it is important to quickly findrse low-weight paths early in
the process. We achieve this acquisition of lower boundseggnding a number of trials
with a thinned-out graph, that is, for sorie< ¢ < 1, we consider a graph that contains
only thet| E| lightest edges of the input graph. (Especially in databppéiaations, similar
techniques are known as “preheating the cache.”) Triala tmartain value of are repeated
with different random colorings until the lower bound doex fmprove any more. By
default, ¢ is increased in steps df/10; should we run out of memory, this step size is
halved. This allows to successfully complete trials in thiened out graphs, making trials
feasible on the original graphs by providing them with pdwikbounds for pruning.

October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in pbca60

Table 1. Basic properties of the network instaneeasT (Scott el al'?) and DROSOPHILA
(Giot et al”). The clustering coefficienis the probability that{u,v} € E for u,v,z € V
with {u,z} € E and{z,v} € E.

vertices edges clustering coefficient average degree nuaxidegree

YEAST 4389 14319 0.067 6.5 237
DROSOPHILA 7009 20440 0.030 5.8 175

3.3. Efficient Storage of Color Sets

Since one is not only interested in the weight of a solutiart, ib the vertices (that is,
proteins) that it consists of, it is common to not only stdre weight of a partial colorful
path in Equation (1) but also a concrete sequence of verticasrealizes this weight.
This accounts for the bulk of the memory requirement of a eoéming implementation
becausé:[log |V|] bits per stored path are required. We propose to save mersogybly
noting that it suffices to store only the order in which theotslappear on a path: after
completing a color set at some vertexthe path can be recovered by running a shortest
path algorithm (e.g., Dijkstra’s algorithinfor the source vertex while allowing it to only
travel edges that match the color order. This reduces theamyerost per entry t&[log k]
bits, which, for our application, amounts to a saving facbabout2—4. Because of the
resulting increase in computer cache effectiveness, thislly also leads to a speedup
except when either short path lengths are used (where meamoof an issue anyway) or
when many solution paths are found and have to be reconstiuct

As to the data structure for the color sets at each vertey,aleemanaged as a Patricia
tree, that is, a compact representation of a radix'‘tveleere any node which is an only
child is merged with its parent. A color set is represented a# string of fixed length.
The Patricia tree allows for very quick insertions and itierss with a moderate memory
overhead of, e.g., 12 bytes per color set on a 32-bit system.

4. Experimental Results

Method and Results. We have implemented the color-coding technique with theawg-
ments described in the last section. The source code of tigrgm is available from
http://theinfl.informatik. uni-jena.de/col orcodi ng/;itiswrittenin
the C++ programming language and consists of approxima@2dp lines of code. The
testing machine is an AMD Athlon 64 3400+ with 2.4 GHz, 512 K&elee, and 1 GB main
memory running under the Debian GNU/Linux 3.1 operatingeays The program was
compiled with the GNU g++ 4.2 compiler using the options “-@8rch=athlon”.

The real-world network instances used for speed measutsmeere theSac-
charomyces cerevisiamteraction network used by Scott el ‘dl.and the Drosophila
melanogasteinteraction network described by Giot et’alSome properties of these net-
works, which we will refer to aSEAST andDROSOPHILA are summarized in Table 1.

To explore the sensitivity of the runtime to various graptapaeters (namely, the num-
ber of vertices, the clustering coefficient, the degreeiligion, and the distribution of
edge weights), the implementation was also run on a testbemhdom graph instances

October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in pbca60

L L L L L L L L L L L L L L
10° 3 +YEAST, Scott et al. (adjusted) E 10° 3 xDROSOPHILA, 20 best paths E
— 1 ©YEAST, this work — 1 ODROSOPHILA, 100 best paths
3 10* 4 L 3 10% 4 L
S 3 S 2 OYEAST, 20 best paths
o o]
& 10° 4 i & 103 ©YEAST, 100 best paths i
[} [}
£ £
©10% L 2102 L
£ £
c c
c c
2 10" 4 : 210 3
] s
1 T T T T T T T T T 1 T T T T T T T T T
4 6 8 10 12 14 16 18 20 22 4 6 8 10 12 14 16 18 20 22
a) path length b) path length

Figure 4. (a) Runtimes forvEAST as reported by Scott et al® (adjusted for speed difference of the testing
machines) and measured with our implementation. In bothscamths must start at a membrane protein, and end
at a transcription factor. Memory requirements were, 8 §IB for £ = 10 and 242 MB fork = 21.

(b) Comparison of the runtimes of our implementation when &gibYEAST andDROSOPHILAfor various path
lengths, seeking after either 20 or 100 minimum-weight éthat mutually differ in at least 30% of their vertices.
There were no restrictions as to the sets of start and enidegrt

that were generated with the algorithm described by ¥olZhe results of all experiments
and details as to the experimental setting are given in Egdirand 5.

Note that Scott et d° obtained their runtimes on a dual 3.0 GHz Intel Xeon proaesso
with 4 GB main memory. To make their runtimes comparable witins, Figure 4 does
not report their original times here, but divides themihd (which is a very conservative
estimate in favor of Scott et &f.that most likely overestimates the speed of our machine).

Discussion. Compared to the (machine-speed adjusted) runtimes frort &cal'°, our
implementation is faster by a factor of 10 to 2 000Y®RST (see Figure 4a). Scott et al.
discuss findings for paths up to a length of 10 which they wete ® find in about three
hours. These can be found within seconds by our implementaillowing for interactive
queries and displays. The range of feasible path lengthsie than doubled.

Figure 4b shows that the runtimes for bethasT andbDrROSOPHILAare roughly equal.
The only exception is the search for the best 100 paths withas T which not only takes
unexpectedly long but also displays step-like structuvsst likely, these two phenomena
can be attributed to the fact that certain path lengths attownuch fewer well-scoring
paths than others iREAST, causing the lower-bound heuristic to be less effectivay- Fi
ure 4b also demonstrates that a major factor in the runtiraetisally the number of paths
that is sought after. This is because a larger number of pathsens the lower bound of
the heuristic which cannot cut off as many partial solutiang maintaining the list of paths
and checking the “at least 30% of vertices must differ” ciite becomes more involved.

Figures 5a, 5b, and 5d show that the runtime of the colorrgpdigorithm appears
to be somewhat insensitive to the size of the graph (inangdsiearly with increasing
graph size) as well as the clustering coefficient and theiloigion of edge weights. The
somewhat unexpectedly high runtimes for graphs with less 800 vertices in Figure 5a
are explained by the fact that the number of length-10 argtihef5 paths in these networks

October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in pbca60

10° 10°
g B2
£ 10 - k=151 B 10° 4 G nn00000006000 000Ke15
[5) [5)
Q Q
92, 92,
o 10t L o 10! 4 L
£ kesor £
jo2} jo2}
£ £
E 14 FE 14 g
= =

10-1 7 T T T T T - 10-1 T T T T T T -

0 2000 4000 6000 8000 10000 0 0.2 0.4 0.6 0.8 1

a) number of vertices b) clustering coefficient

103 L L I L 103 | L

auniform distribution

& @ &YEAST distribution
T 10° 5 2 107 4 3
S 3
3 g
o nl L o 10 | L
g g
= o
£ £

10t - . T T T = 10" - T T T -

3 -2 -1 0 5 10 15

C) value of a d) path length

Figure 5. Runtime for our color-coding implementation ondam networks, seeking after 20 minimum-weight
paths. Unless a parameter is the variable of a measurenmenfoltowing default values are used (we have
empirically found them to result in networks that are quiteikar to YEAST): 4 000 vertices; degree distribution
is a power law with exponential cutoff, that is, the fractipp of vertices with degreé satisfiesp,, ~ k< -
e~k/1.3 . ¢=45/k: the default value for is —1.6; edge weights are distributed asVEAST; the clustering
coefficient is0.1. The data shown reports the average runtime over five rus @dDependency on the number
of vertices. (b) Dependency on the clustering coefficie(t) Dependency on the parameterof the power law
distribution. (d) Dependency on the distribution of edge weights for thretewdint distributions: A uniform
[0, 1]-distribution, the distribution of EAST, and the distribution ofEAST under consideration of vertex degree.

is very low, causing the heuristic lower bounds to be rathefféctive (this also explains
why the effect is worse fok = 15 than it is fork = 10).

Figure 5c shows that the algorithm is generally faster whenvertex degrees are
unevenly distributed. This comes as no surprise becausieviedegree vertices, fewer
color sets have to be maintained in general and the heulastier bounds are often bet-
ter. Fork = 15, two points in the curve require further explanation: Fitee drop-off
in running time fora < —3 is explained by the random graph “disintegrating” into dmal
components. Second, the increased runtimefoK o < —2 can most is most likely due
to a decrease in the total number of length-15 paths as ced pafarger values aof.

5. Conclusion

We have given various algorithmic improvements that en#lidecolor-coding technigue
as a tool both for fast exploration of small pathway candidats well as for finding larger
structures than previously possible. The protein intégmadtetworks of yeast and fruit fly
are the so-far most extensively analyzed and understoodioas high-quality data be-

October 5, 2006 12:46 Proceedings Trim Size: 9.75in x 6.5in pbca60

comes available in the future, it would be interesting taHar investigate the practical
application of color-coding beyond the detection of linpathways. Most of the improve-
ments we have given are also useful for detecting othertstregthat can also be handled
with color-coding such as cycles and trees. Finally, we flather research into the ap-
plicability of color-coding to querying pathways in a netkdas recently done by Shlomi
et all!) and are working on extending our color-coding implemeateto a user-friendly
tool for pathway candidate detection.

Acknowledgments

Falk Huffner was supported by the Deutsche Forschungsigsoieft, Emmy Noether re-
search group PIAF (fixed-parameter algorithms), NI 369&h&Stian Wernicke was sup-
ported by the Deutsche Telekom Stiftung, and Thomas Zickeex supported by the
Deutsche Forschungsgemeinschaft project PEAL (Parammede€omplexity and Exact
Algorithms), NI 369/1. The authors are grateful to JacobtSgambridge, MA) for pro-
viding them with the yeast interaction network discusseRéf. 10 and to Hannes Moser
and Rolf Niedermeier (Jena) for discussions and comments.

References

N. Alon, R. Yuster, and U. Zwick. Color-coding. ACM 42(4):844—-856, 1995.

J. S. Bader, A. Chaudhuri, J. M. Rothberg, and J. Channi@atonfidence in high-throughput

protein interaction network®ature Biotech.22(1):78-85, 2004.

3. T. Can, O. Camoglu, and A. K. Singh. Analysis of prot@retein interaction networks us-
ing random walks. IrProc. 5th ACM SIGKDD Workshop on Data Mining in Bioinforneati
(BIOKDD '05), 2005.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Sthkitroduction to AlgorithmsMIT
Press, 2001.

5. M. R. Garey and D. S. JohnsoBomputers and Intractability: A Guide to the Theory of NP-
Completenesd-reeman, 1979.

6. G. K. Gerber, Z.-B. Joseph, T. I. Lee, et al. Computatiatiatovery of gene modules and
regulatory networksNature Biotech.21(11):1337-1342, 2003.

7. L. Giot, J. S. Bader, C. Brouwer, et al. A protein interactmap of Drosophila melanogaster.
Science302(5651):1727-1736, 2003.

8. T. Ideker, V. Thorsson, J. A. Ranish, et al. Integratedog@n and proteomic analyses of a
systematically perturbed metabolic netwdBcience292(5518):929-934, 2001.

9. T. Ito, T. Chiba, R. Ozawa, et al. A comprehensive two-id/lanalysis to explore the yeast
protein interactomePNAS 98(8):4569-4574, 2001.

10. J. Scott, T. Ideker, R. M. Karp, and R. Sharan. Efficiegbathms for detecting signaling path-
ways in protein interaction networkd. Comp. Biol. 13(2):133-144, 2006. Preliminary version
appeared iProc. RECOMB’05

11. T. Shlomi, D. Segal, E. Ruppin, and R. Sharan. QPath: aaddbr querying pathways in a
protein—protein interaction networBMC Bioinformatics7:199, 2006.

12. M. Steffen, A. Petti, J. Aach, P. D’haeseleer, and G. €tuAutomated modelling of signal
transduction network®MC Bioinformatics 3:34, 2002.

13. E. Volz. Random networks with tunable degree distrdutand clusteringPhys. Rev. E

70:056115, 2004.

.

10

