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Abstract Kernelization is a core tool of parameterized algorithmics
for coping with computationally intractable problems. A kernelization
reduces in polynomial time an input instance to an equivalent instance
whose size is bounded by a function only depending on some problem-
specific parameter k; this new instance is called problem kernel. Typically,
problem kernels are achieved by performing efficient data reduction rules.
So far, there was little study in the literature concerning the mutual
interaction of data reduction rules, in particular whether data reduction
rules for a specific problem always lead to the same reduced instance,
no matter in which order the rules are applied. This corresponds to
the concept of confluence from the theory of rewriting systems. We
argue that it is valuable to study whether a kernelization is confluent,
using the NP-hard graph problems (Edge) Clique Cover and Partial
Clique Cover as running examples. We apply the concept of critical
pair analysis from graph transformation theory, supported by the AGG
software tool. These results support the main goal of our work, namely, to
establish a fruitful link between (parameterized) algorithmics and graph
transformation theory, two so far unrelated fields.

1 Introduction

Theoretical Computer Science is usually divided into algorithm-oriented research
and description-oriented research (as witnessed by the two volumes “Algorithms
and Complexity” and “Formal Methods and Semantics” of the Handbook of
Theoretical Computer Science [15]). Unfortunately, the corresponding research
communities typically work in two “parallel worlds” with relatively little inter-
action. In this work, we propose a new link between algorithmics and formal
methods that may lead to a fruitful “interdisciplinary” field of research. More
specifically, we develop a connection between efficient preprocessing of NP-hard
(graph) problems by kernelization [2, 11] and the theory of graph transforma-
tions [8, 20]: We employ the concept of confluence of rewriting systems to show
“uniqueness results” for problem kernels. This leads to the natural concept of
confluent data reduction rules, having a number of both theoretical and practical
benefits as discussed in the following.

? Supported by DFG project PABI (NI 369/7-2).



Confluence in kernelization. Data reduction, also known as polynomial-time
preprocessing, is a classic approach for dealing with NP-hard combinatorial
optimization problems (see [2, 11] for surveys). The idea is to remove redundant
parts of the input, thereby obtaining a hard “core” of the instance. Costly
algorithms need then only be applied to this core. Data reduction is thus useful
in virtually any approach to solving computationally hard problems, whether
heuristic, approximative, or exact. Formally, we consider only decision problems,
and a (data) reduction rule replaces in polynomial time a given problem instance I
by an instance I ′ with |I ′| < |I|. We say that the rule is correct when I is a
yes-instance iff I ′ is a yes-instance. An instance to which none of a given set of
reduction rules applies is called reduced with respect to these rules.

While they are a standard technique for practitioners, only fairly recently
have data reduction rules been the subject of wider theoretical analyses, using
the concept of a problem kernel [2, 11]. This notion comes from the field of
parameterized complexity [5, 9, 18], where performance of algorithms is analyzed
not just in terms of the problem size n, but also in terms of a parameter k, for
example the solution size. A kernelization is a data reduction that creates an
equivalent instance whose size depends only on the parameter k, and not on the
original input size n anymore (see Section 2 for a more formal definition).

We call a terminating set of data reduction rules confluent if any order of
application of the rules yields a unique reduced instance, up to isomorphism.
Confluence is a standard concept from graph transformation theory (see below).
There are a number of reasons why it seems useful to investigate whether data
reduction rules are confluent: If they are, then the rules are robust in a sense; we
obtain a unique starting point for further processing after the data reduction has
been performed. In an implementation of the rules, we can apply the rules in any
order without worrying about the result, and can thus optimize for the speed of
their application. If the rules are not confluent, this might indicate some “slack”
in the rules: some orders of application might lead to worse results, that is, larger
kernels. Investigating all this might lead to improved reduction rules. Further,
insight on the interaction of data reduction rules can lead to faster kernelizations.
Confluence was also exploited by Kneis et al. [14], who showed that for their
problem, one order of application of data reduction yields some desired property
of the reduced instance, and another order yields a different desired property.
A proof of confluence now shows that a reduced instance has both properties.
Finally, proving confluence is also a good way to check for possible conflicts
between data reduction rules, since all possible interactions need to be taken into
account. It might also give an incentive to create “minimal” kernelization rules
in order to make confluence proofs easier, which could give a sharper picture of
what exactly is needed to achieve a kernel.

If we allowed data reduction in kernelization with restriction of the rule
execution order, we can force confluent kernelization in a trivial way by allowing
only one execution order. In this paper, we avoid this trivial case by allowing
any execution order.



Confluence of graph transformation systems. The theory of graph grammars
and graph transformation systems has been started in the early 1970s [6] as a
generalization of Chomsky grammars and term rewriting systems, which are based
on strings and trees, respectively. The main idea is the rule-based modification
of graphs. Graph transformations are most suitable to model the operational
semantics of visual languages and also to define model transformations between
different kinds of models. Several approaches for graph transformations are
known [20], including logical and algebraic approaches. A graph transformation
system consists of a set of graph rules, which are applied in a non-deterministic
way, leading to graph transformation steps G =⇒ H and sequences G

∗
=⇒ H.

A single rule consists of a left-hand side graph LHS , a right-hand side graph
RHS , and their intersection graph. To apply a rule, a match is sought, that is, a
subgraph in the input graph that is isomorphic to LHS . This subgraph without
the intersection graph is then deleted, resulting in a context graph, which is glued
together with RHS at the nodes and edges of the intersection graph. A graph
transformation system is called confluent if for each pair of graph transformation
sequences G

∗
=⇒ G1, G

∗
=⇒ G2, there is a graph G3 together with sequences

G1
∗

=⇒ G3 and G2
∗

=⇒ G3.
There are numerous applications in software engineering, concurrency, and

distributed systems [7], where confluence of graph transformations plays an
important role. Confluence together with termination, that is, non-existence of
infinite transformation sequences, implies that any order of applying the rules as
long as possible yields a unique graph, up to isomorphism. Moreover, we obtain
for isomorphic input graphs isomorphic reduced graphs [8].

In order to show confluence it is sufficient to show local confluence and
termination [13, 17], where local confluence means confluence for the special
case that the given sequences from G to G1 and G2 are transformation steps
G =⇒ G1 and G =⇒ G2, where in each step only one transformation rule
is applied. Data reduction rules for kernelization for graph problems define
graph transformation systems based on undirected graphs, such that the general
concepts of (local) confluence and termination are applicable. The algebraic
theory of graph transformations [8] provides a specific technique known from
term rewriting systems [13], called critical pair analysis, which supports the
verification of local confluence using the software system AGG [1].

Unfortunately, the theory of critical pair analysis developed for graph trans-
formations [8] cannot be applied directly to data reduction rules. We discuss in
Sections 3 and 4 what can be done so far. It is an interesting challenge for future
work to extend the theory of graph transformations [8]—and the corresponding
tool AGG—to handle also data reduction in a more general way.

Structure of the paper. After presenting basic concepts and definitions about
kernelization and critical pair analysis in Section 2, we present our two case
studies Clique Cover and Partial Clique Cover in Section 3 and 4, respectively,
by showing that the corresponding data reduction rule sets yield problem kernels
and are confluent. Section 5 concludes with an outlook to future work. Due to
limited space, we defer some proofs and details to the full version of this paper.



2 Basic Concepts and Definitions

Kernelizations. A parameterized problem can be defined by a set of instances
(x, k), where k is called the parameter [5, 9, 18]. Let L be a parameterized
problem. A reduction to a problem kernel or kernelization is a transformation
via data reduction rules of an instance (x, k) to an instance (x′, k′) (the problem
kernel of instance (x, k)), such that

– (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L,
– |x′| ≤ g(k) for some arbitrary computable function g depending only on k,
– k′ ≤ k, and
– the transformation runs in polynomial time.

We call g(k) the problem kernel of the parameterized problem L.

Critical pair analysis in graph transformation theory. As pointed out in the
introduction, critical pair analysis is a prominent technique for showing confluence
of rewriting systems [13], which has been generalized to graph transformation
systems by Plump [19]. The main idea is to show local confluence not for all pairs
of (a possibly infinite number of) transformation steps G =⇒ G1 and G =⇒ G2

via rules r1 resp. r2, but only for all critical pairs. A pair of transformation steps
is called a critical pair if it is conflicting in a minimal context in the following
sense: The pair G =⇒ G1, G =⇒ G2 via r1, r2 is called parallel independent if
there are transformation steps G1 =⇒ G3, G2 =⇒ G3 via r2, r1 leading to the
same G3. A pair is called conflicting if it is not parallel independent, and it has
minimal context if each vertex and edge in G belongs to the match of r1 or r2
in G. For a graph transformation system with a finite number of rules based
on finite graphs, there is a finite number of critical pairs. All of them can be
computed automatically by the graph transformation analysis tool AGG [1]. The
Local Confluence Theorem for algebraic graph transformations [8] implies local
confluence of a graph transformation system provided that all critical pairs are
strictly confluent, where “strictness” is an additional technical condition for the
transformations. The verification of strict confluence for critical pairs can also be
supported by AGG and is applied to data reduction in Section 3 and Section 4.

The application of critical pair analysis to data reduction rules, however, is
not yet fully automated. The first reason is that the Local Confluence Theorem [8]
based on critical pairs is valid for directed graphs (with parallel edges and loops)
and several other kinds of graphs, but not yet proved for undirected graphs
as considered for data reduction in this paper. The second reason is that data
reduction rules in general are rule schemes in the sense of graph transformation
theory. Each rule schema corresponds to a—possibly infinite—set of rules in
the sense of [8]. For these reasons, we prove confluence directly; in the case of
Partial Clique Cover, the proof is quite complex, based on a large number
of case distinctions. These proofs depend strictly on the specific rules and should
be replaced in future work by a uniform technique based on critical pairs with
tool support by AGG.



3 Case Study Clique Cover

We use the well-known NP-hard Clique Cover problem for our first case study.

Clique Cover
Instance: An undirected graph G = (V,E) and an integer k ≥ 0.
Question: Is there a set of at most k cliques in G such that each edge
in E has both its endpoints in at least one of the selected cliques?

For an instance (G, k), we call a set of at most k cliques that covers all edges
a solution. Choosing Clique Cover1 has several reasons: It is a conceptually
simple graph problem, and the best known (theoretical) data reduction rules so
far are easy to understand and also applied in practice [10]. Moreover, Clique
Cover has a kernelization with a size bound of 2k vertices [10, 12], and it
was recently shown that under standard complexity-theoretic assumptions, this
cannot be improved to a polynomial bound [4].

Kernelization for Clique Cover. For the currently only known kernelization
for Clique Cover with parameter k, the following data reduction rules are
used [10, 12].2

Rule 1 Remove isolated vertices, that is, vertices with no neighbors

Rule 2 If there is an isolated edge, then delete it and decrease k by one.

Two vertices u, v ∈ V are called twins if {u, v} ∈ E and u and v have excactly
the same neighbors (except for v and u, respectively).

Rule 3 If {u, v} are twins and {u, v} is not an isolated edge, then delete u (that
is, remove it from the vertex set and all incident edges from the edge set).

Theorem 1 ([10, 12]). Rules 1 to 3 are correct and yield a problem kernel for
Clique Cover with at most 2k vertices.

Note that for technical correctness of the kernel (as defined in Section 2), we
need to add a fourth rule that checks whether after application of Rules 1 to 3
there are more than 2k vertices left, and if so, replaces the instance with a small
“no”-instance (for instance, k+ 1 disjoint edges). We omit such trivial rules in the
following.

1 Note that in the literature sometimes also covering vertices instead of edges by cliques
is called Clique Cover.

2 We note that Gramm et al. [10] used different rules involving “covered edges”, which
are equivalent to the rules presented here if the initial instance does not have covered
edges (except that Rule 3’ from Gramm et al. [10] does not treat isolated edges
correctly; as already noted by Gyárfás [12], they require a special case.)



Confluence of Data Reduction for Clique Cover. We now show that the kernel-
ization rules from Theorem 1 are confluent.

Theorem 2. The set of Rules 1 to 3 for Clique Cover is confluent.

Proof. Clearly, the order of application for Rule 1 and Rule 2 with respect to
any of the three rules is not relevant, since their application does not affect
the applicability of other rules. It remains to show that the relative order of
applications of Rule 3 does not matter.

If we consider two vertices as equivalent when they are twins, we obtain an
equivalence relation on the vertex set. Thus, we can partition the vertex set into
the equivalence classes of this relation, called twin classes. Note that every twin
class forms a clique in the graph. Let the twin graph3 of a graph be a graph with
the twin classes as vertices and an edge between two twin classes if there is an
edge between one vertex from one class and one vertex from the other class.

The twin graph does not change (up to isomorphism) when Rule 3 is applied,
since u and v must be from the same twin class and the rule thus always leaves
at least one vertex in any twin class. Further, Rule 3 is applicable until a twin
class contains exactly one vertex (if it is connected to vertices outside the twin
class) or two vertices (if it is an isolated clique). Since the twin graph and the
number of vertices per twin class uniquely represent a graph up to isomorphism,
we obtain confluence. ut

This proof also yields a shortcut to calculate the result of the kernelization,
whose naive calculation would require O(|E| · |V |2) time (Gramm et al. [10] only
state the running time of O(|V |4) for Rules 1 to 3 plus another rule).

Corollary 1. A 2k-vertex kernel for Clique Cover can be found in linear
time.

Proof. From the proof of Theorem 2, we can see that it is sufficient to calculate
the twin graph, contract each twin class to a single vertex, and then delete
isolated vertices and edges. Finding the twin graph can be done in linear time [16,
Corollary 7.4], so the kernelization can be done in linear time, too. ut

Confluence via Critical Pair Analysis. As pointed out in Section 1, the standard
way to show confluence of a rule set in graph transformation theory [8] is to
construct all critical pairs and to show for each critical pair that it is strictly
confluent. The approach has been shown for directed graphs [8], and we are
confident that it can also be extended to undirected graphs as considered in
this paper, in particular to data reduction for Clique Cover and Partial
Clique Cover. Note that data reduction rules, like Rule 2, may also change
the parameter k, but this is not essential for confluence and will be disregarded
in this section.

Actually, Rule 3 is a rule scheme in the sense of graph transformation theory,
which can be represented by the following family of rules R3.m for m ≥ 1:

3 Twin classes and the twin graph have been used before for data reduction under the
names critical cliques and critical clique graph (see e. g. [11]).



LHS u
......x1 xm

v

R3.m(u,v)+3
RHS

x1 . . . xm

v

The rule describes the deletion of u. Applying the rule to a graph G means
to find an occurrence of the left-hand side LHS in G satisfying N [u] = N [v] =
{u, v, x1, . . . , xm}, and to replace this occurrence by the right-hand side RHS .

For graphs with n vertices, we only have to consider rules Rule 1, Rule 2,
Rule 3.1, . . . , Rule 3.r with r = n − 2, because rules with r > n − 2 cannot
be applied. Fig. 1 shows the table computed by the AGG tool [1] giving the
number of critical pairs (CP) for each pair of rules and r = 3. Clicking on
an entry in the CP table table (e. g. the highlighted field showing 12 minimal
conflicts for Rule 3.2 and Rule 3.3 where rule Rule 3.2 is applied first), the 12
conflicting situations of these two rules are shown in detailed graphical views.
Vertices and edges in the rules (in the bottom of Fig. 1) are numbered to define
their conflicting overlapping situation. We can see one of the 12 conflicts in the
overlapping graph P in the upper right part of Fig. 1, where vertex 1 and edges
5, 6 and 8 shall be deleted by Rule 3.2, but vertex 1 and edges 6 and 8 are also
needed for the application of Rule 3.3 which is supposed to delete vertex 4 and
its incident edges.

Figure 1. CP table for Clique Cover Rules 1 to 3.3, and one critical pair in detail

For each critical pair P1
r1⇐= P

r2=⇒ P2 of the rule set in Fig. 1, we have shown
strict confluence using AGG, essentially by applying the rules from the rule set

as long as possible to P1 and to P2, leading to reduced
graphs P̄1 and P̄2, and showing that they are isomorphic,
as indicated in the diagram to the right.

Pr1
px

r2
&.

P1

∗
%- P2

∗
qy

P̄1
∼= P̄2



The critical pairs can be computed automatically, and the reduction sequences
P1

∗
=⇒ P̄1, P2

∗
=⇒ P̄2, and the isomorphism for P̄1 and P̄2 can be checked

interactively using the tool AGG.

4 Case Study Partial Clique Cover

We provide a second, more demanding case study: Partial Clique Cover, a
generalization of Clique Cover where some edges C are annotated as already
covered, and only uncovered edges need to be covered by cliques. Due to space
constraints, we can only sketch our results.

We generalize Rules 1 and 2 in a canonical way.

Rule 4 ([10, Rule 1]) Remove isolated vertices and vertices that are only inci-
dent to covered edges.

Rule 5 If there is an isolated edge, then delete it and, if the edge was not covered,
decrease the parameter by one.

We then adapt Rule 3 as follows:

Rule 6 Let u, v be twins. Mark all edges incident to u as covered if the following
covering conditions hold:4

∀x ∈ V \ {u, v} : {u, x} ∈ C ⇐⇒ {v, x} ∈ C (1)

{u, v} /∈ C ⇒ ∃x ∈ V \ {u, v} : {v, x} /∈ C. (2)

Unfortunately, the new rules do not yield a problem kernel for Partial
Clique Cover with respect to the parameter k. In fact, we can show that
Partial Clique Cover is already NP-hard for k = 3, and thus cannot have
a problem kernel unless P = NP. However, we can show a kernel for Partial
Clique Cover with respect to the combined parameter (k, c), where c = |C| is
the number of covered edges.

Theorem 3. Rules 4 to 6 yield a problem kernel for Partial Clique Cover
with at most 2k+c vertices.

The idea of the proof is to show that if a Partial Clique Cover instance
has more than 2k+c vertices, then we can construct a Clique Cover instance,
find a data reduction opportunity there using Rules 1 to 3, and using this also
find a data reduction for the Partial Clique Cover instance; in this way, we
can ise the bounds from Theorem 1.

Next, we claim that the new rules are confluent; the omitted proof uses local
confluence and a somewhat involved case distinction.

Theorem 4. Rules 4 to 6 for Partial Clique Cover are confluent.

The challenge in proving Theorem 4 is that we cannot use the twin graph
anymore as in Theorem 2, since it might be required for an optimal solution to
cover twins with different cliques. In addition to a direct proof, for graphs of
bounded size Theorem 4 can be shown using critical pair analysis by AGG [1].

4 Note that if we drop either (1) or (2), then the rule is not correct.



5 Discussion and Future Work

Seemingly for the first time, our work establishes a fruitful link between graph
transformation theory and the theory of kernelization from parameterized al-
gorithmics. While considering (comparatively simple) kernelizations for edge
clique covering, already several theoretical and technical challenges popped up
when proving confluent kernelizations. We believe that to analyze whether a set
of data reduction rules is confluent is a well-motivated and natural theoretical
question of practical relevance with the potential for numerous opportunities for
(interdisciplinary) future research between so far unrelated research communities.

As to research questions that are more rooted in graph transformation theory,
it is first important to extend the theory of critical pair analysis to undirected
graphs. We are confident that this works not only for the examples in this paper.
Moreover, it is an important challenge to extend critical pair analysis from rules
considering a constant-size subgraph to so-called rule schemes with unbounded
number of vertices, that is, to transfer the “amalgamation” [3] of rewriting rules
to this new context.

As to research on confluent kernelization rooted more in algorithmics, it
appears to be of general interest to investigate how confluent problem kernels
may help in deriving both upper and lower bounds for problem kernel sizes. In
addition, it remains to study how confluence may contribute to speeding up
kernelization algorithms and how the knowledge of having a uniquely determined
problem kernel can help subsequent solution strategies that build on top of the
kernel. Finally, studying confluence of data reduction and kernelization beyond
graph problems, for example for string or set problems, remains a future task.

Acknowledgment. We thank Jiong Guo (Universität des Saarlandes) for pointing
to an NP-hardness proof for Partial Clique Cover already for k ≥ 3 covering
cliques (see Section 4).
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