
Chapter 1

Depth-First Search
(Ariadne &Co.)

Michael Dom, Falk Hüffner, and Rolf Niedermeier

“Now this happens to those who become hasty in a maze: their very haste gets them
more and more entangled.”

Lucius Annaeus Seneca (4BC– 65AD)

Ariadne, who according to Greek
mythology was the daughter of Mi-
nos, the king of Crete, fell in love
with Theseus. This Athenian hero
had been entrusted with killing the
Minotaur, a monster half man and
half bull. The challenge was made
vastly more difficult by the fact that
the Minotaur was hidden in the La-
byrinth. The clever Ariadne provided
her hero with a ball of thread: by
fixing the end of the thread at the
entry of the Labyrinth and unrolling the thread while traversing the Laby-
rinth, Theseus could on the one hand avoid searching parts of the Labyrinth
repeatedly, and on the other hand be sure to find his way back into Ariadne’s
arms.

Not just the ancient Greeks had to deal with the efficient search of spaces
such as labyrinths; this task also plays a central role in computer science.
One method for this is depth-first search, which we will examine more closely
in the following.
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Algorithmic Idea and Implementation

As already mentioned, the problem is to completely search a labyrinth. Here,
a labyrinth is a system of corridors, dead ends, and junctions, and the task
is thus to visit every junction and every dead end at least once. Further, we
would like to pass each corridor no more than once in each direction—after
all, Theseus needs to have enough strength in the end for both the Minotaur
and Ariadne.

Probably the simplest idea to solve this problem is to just walk into the
labyrinth from the starting point and to tick off each junction as they are
encountered. If you wind up in a dead end or a junction you have seen before,
you turn around, go back to the last junction and try again from there in
another, still unexplored direction. If there is no unexplored direction, then
go back to another junction and so on.

Does this method actually lead to the goal? Let us look at the search in
more detail; to simplify the description, we use a piece of chalk instead of a
thread. With the chalk we mark at each junction the outgoing corridors, with
one tick for corridors previously traversed, and with two ticks for corridors
traversed twice (that is, in two directions). Specifically, the rules for our
search in the labyrinth are as follows.

• If you are in a dead end, turn around and go back to the last junction.
• If you reach a junction, tick the wall of the corridor you came from to be

able to find back later. After this, there are several possibilities:

1. First you check whether you moved in a circle: If the corridor you came
from just got its first tick, and there are also ticks visible on other
corridors of the junction, then this is the case. You then make a second
tick on the corridor you came from and turn around.

2. Otherwise, you check whether the junction has unexplored corridors: If
there are corridors without ticks, then choose an arbitrary one (say the
first to the left), mark it with a tick and leave the junction through this
corridor. (Incidentally, this is the case at the start of the search.)

3. Otherwise, there is at most one corridor with only one tick, and all other
corridors have two ticks. Thus, you have already explored all corridors
leaving the current junction, and leave through the corridor with only
one tick, giving it a second tick as a matter of form. If there is no such
corridor, that is, all corridors already have two ticks, then you are back
at the start and have completely searched the labyrinth.

Let us now look at the example shown in Fig. 1.1, where a path from the
start A to the goal F is sought. (That is, again we must traverse the entire
labyrinth, but the search can be cut short when F is found.) We assume that
a dead end can be recognized as such only upon reaching it.

You start from A northwards. The first junction is C. There you leave a
tick at the southbound exit (1). Of course there is no other tick here, so you
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Fig. 1.1 Example for depth-first search in a labyrinth. Starting from A, a path to F is
sought. Numbers mark the places, where chalk ticks are left.

choose the first unmarked corridor to the left, which is the one towards the
west, and tick it (2). Then you reach a dead end at B and turn around. Back
at C, the westbound corridor has now two ticks, the southbound one, but
the northbound is not marked at all. Thus, you choose this way. At E, there
is again an unexplored junction, and from the three possible corridors you
choose the one towards the west. After two turns, you cross straight ahead
over the junction at G, leaving two ticks behind (7 and 8). In H, you reach
a dead end, so you again turn around. In G, there is only one option left:
southwards to E. Here the rule against running in circles comes into effect
for the first time: on entering E, you made a tick at the northbound exit
of E (11); further, there is a tick at the southbound exit (5) and one at the
westbound exit (6)—thus, you need to turn back. Over the junction G and
two curves you go back, so that the northern part is now completely searched
and you are back at E. Towards the east, there is no tick, and you go there.
Finally, you reach the goal at F.

The principle we have learned here is called depth-first search, since as
described we always go as deep as possible into the labyrinth and only turn
around when it is not possible to proceed or a known place is encountered.
Only in these cases, we go back a bit and try again from an earlier point into
another direction.

The rules for depth-first search are so simple that they can be taught
to a computer with only a few lines. For each junction, a “state” is stored,
and initially the states of all junctions are set to “undiscovered.” When the
DepthFirstSearch function is called at a junction X, it is first tested
whether we moved in a circle (line 2 in the program fragment DepthFirst-
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DepthFirstSearch I

1 function DepthFirstSearch(X):
2 if state[X ] = “discovered” then return; endif

3 if X = goal then exit “Goal found!”; endif
4 state[X ] := “discovered”;

5 for each neighboring junction of Y of X

6 DepthFirstSearch(Y );
7 end for

8 end function // End of DepthFirstSearch function

9 DepthFirstSearch(start junction); // Main program

Fig. 1.2 Program code for depth-first search using recursion.

Search I shown in Fig. 1.2). Next, it is checked whether the goal was reached
(line 3)—if so, the program quits with the “exit” command, and the search
is finished. Otherwise it goes on, and the junction X is marked as “discov-
ered” (line 4). Now, all neighboring junctions that have not been explored
yet need to be visited. To do this, the DepthFirstSearch function calls
itself for each neighboring junction Y (lines 5–7). This is a frequent trick in
programming called recursion, which was already described in Chapter ??.
When the newly called DepthFirstSearch function notices that Y was
already visited and we thus moved in a circle, it immediately returns (line 2)
to the calling function at the junction X. Otherwise, the search continues at
junction Y .

Sometimes, one wants to avoid recursion, one reason being that at each
recursive call in the computer implementation additional time is spent to
allocate variables etc. In this case, the depth-first search can be coded without
recursion using a stack. A stack is a data structure that allows placing objects
(in our case junctions) on top of the stack or to remove the object currently on
top of the stack. For us, the stack serves to store the return path; we always
put a junction X on top of the stack when leaving it, together with a number
“exits” that indicates how many of the corridors leaving X have already
been explored (see Fig. 1.3). For each junction, we have an array listing
all neighbor junctions—thus, we can easily retrieve e. g. the fifth neighbor
junction of a junction X when needed. The variable “mode” contains the
information whether we are following an unexplored corridor or whether we
are coming back from an already explored junction, going through a corridor
that we have already passed in the other direction.
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DepthFirstSearch II

1 X := start junction; mode := “forwards”;
2 repeat

3 if mode = “forwards” then // we came here through a new corridor

4 if state[X ] = “discovered” then
5 mode := “backwards”;

6 take the top pair (X, exits) off the stack;

7 else // junction is unexplored so far
8 if X = goal then exit “Goal found!”; endif

9 state[X ] := “discovered”;

10 if X has no exits then exit “Goal not found!”; endif
11 put the pair (X, 1) on top of the stack;

12 X := the first neighboring junction of X ;
13 endif

14 else // we are coming back

15 if exits < number of neighboring junctions of X then
16 exits := exits + 1;

17 put the pair (X, exits) on top of the stack;

18 mode := “forwards”;
19 X := neighboring junction number exits of X ;

20 else // there are no unexplored corridors here any more

21 if the stack is empty then
22 exit “Goal not found!”;

23 else // we go back further

24 take the top pair (X, exits) off the stack;
25 endif

26 endif
27 endif

28 end repeat

Fig. 1.3 Program code for depth-first search without recursion.

Applications

The depth-first search method does not only work for labyrinths, but it has
also applications in completely different contexts, as we will see in this section.

Example: Web Search

Here, we do not consider Theseus who is wandering about in the labyrinth,
but observe a student called Sinon who is searching for a specific web page.

Sinon Davis has recently been to a party given by his classmate Ariadne,
and there he stroke up a conversation with a cute girl. Now he would like to
see her again, but unfortunately he has not asked for her name. What to do?
Of course, Sinon could ask Ariadne, but firstly he is too shy, and secondly
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Ariadne SmithFriends:Theseus BrownPhaidra JonesMedea WilliamsPelias Miller
fazebookSearhHelpFlirtTeaseLogout
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Fig. 1.4 Depth-first search in fakebook: The numbers show the order of the hops from

profile to profile. A straight arrow means that a profile contains a link to another profile.

An arched arrow means that the “Back” button is used at this place. Note that not all
shown links are used since some of them are displayed in violet at the moment when the

profile is visited.

Ariadne herself does not know all the guests from her party. Finally, Sinon has
a bright idea: why not look up the girl on the Internet site “fakebook.org”?
In this commonly known social network platform, almost every young per-
son in the country has a profile, typically with a photo and with links to
profiles of friends. Hence, Sinon could just visit Ariadne’s profile in fakebook
and, starting from there, go through the profiles of all her friends, friends
of friends, friends of friends of friends, and so on—until he has either found
his adored (hopefully, she has a photo in her profile) or completely scanned
the relevant parts of Ariadne’s surrounding. Sinon, therefore, is confronted
with the following task: scan all profiles in fakebook that are reachable from
Ariadne’s profile via links whose owners have been at the party. As in the
previous section, the difficulty is again, on the one hand, not endlessly to
move in a circle and, on the other hand, to check everything completely and
systematically. This can be done efficiently with a depth-first search in the
network of the profiles in fakebook.
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Thus, assume that Sinon is beginning his search and is starting at Ari-
adne’s profile. Hence, he clicks on the first link in the list of Ariadne’s friends
and arrives at the profile of Theseus (see Fig. 1.4). Since Theseus is not the
person Sinon is searching for, Sinon continues with clicking on the first link
of his profile. In this way, he follows the links from profile to profile, always
taking care not to follow links that lead to profiles that he has already vis-
ited: Sinon, a skilled web surfer, can recognize these links because his browser
displays them in violet instead of blue (this helpful function of the browser
in a sense corresponds to the chalk markings in our first example). When
Sinon finally reaches a profile whose owner has not been at the party, or
when all friends of the owner have already been processed (and displayed in
violet), then Sinon clicks on the “Back” button of his browser and continues
with the friends on the resulting profile. Like DepthFirstSearch II, the
“Back” function of the browser uses a stack; whenever a link is clicked, the
address of the page containing the link is put on the stack, and whenever the
“Back” button is used, the browser jumps to the address on the top of the
stack and removes the address from the stack.

If Sinon’s adored one has a photo on her profile, and if her profile can be
reached from Ariadne’s profile by following a series of links whose owners have
all been at the party (which was our assumption), then Sinon will definitely
find her with this method! If, however, Sinon finally ends up on Ariadne’s
profile by clicking on the “Back” button, and all links on Ariadne’s profile
have been visited (and, hence, displayed in violet), then this means that Sinon
has bad luck and will not find her—but at least he can be sure that he has
not missed any of the profiles coming into question.

Example: Labyrinth Creation

Depth-first search is useful not only for Theseus, but also for the Minotaur: it
can be used to create very confusing labyrinths. The method is very simple:
Take a regular grid that consists of squares that are separated by “borders”,
and start the depth-first search at an arbitrary square of the grid. Then, the
depth-first search recursively calls itself for all neighboring squares in random
order (for example, the random number algorithm from Chapter ?? can be
used here). Whenever a square is visited for the first time, the border to the
preceding square is destroyed (that is, the border to the square from which
the depth-first search reached the new square). The result is a pattern like
the one shown in Fig. 1.5. Since the depth-first search visits each square, it
creates a path from the starting point to each square and, therefore, from each
square to each other square. However, these paths are not easy to discover.
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Fig. 1.5 Example for a labyrinth created by a depth-first search.

Example: Television Shows

Let us assume that the television show “Sick Sister” is going to produce
two new seasons. In this show, the candidates are put into the “Sick Sister
House”, where they are observed by cameras the whole day (and night).
In order to provide interesting entertainment, the candidates should be at
loggerheads as often as possible, which means that in each season there should
be no two candidates in the house that like each other. Now assume that the
candidates for the upcoming two seasons have already been selected, but for
each candidate it still has to be decided—of course, obeying the rule “no two
candidates in the house that like each other”—whether he (or she) is part of
the first or the second season.

To solve this task, one can create a “sympathy graph”: on a piece of
paper, draw a small circle—called vertex—for each candidate, and connect
two circles with a line—called edge—if the corresponding candidates like each
other (see Fig. 1.6 for an example).1 Now, the task is to color the vertices of
the graph in such a way that not more than two colors are used, each vertex
gets exactly one color, and no two vertices that are connected by an edge
get the same color. Once the graph is colored, the color of each vertex tells

1 This type of graphs, consisting of vertices and edges, has nothing to do with graphs

of functions as they are known in the field of mathematics called analysis. “Vertices-and-
edges graphs” can be used to model a variety of circumstances and objects, as for example

labyrinths: each dead end and each crossing of the labyrinth can be modelled as a vertex

and each path of the labyrinth as an edge.
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Fig. 1.6 A “sympathy graph”: if two persons like each other, then the corresponding
vertices (marked with the initials of the persons) are connected by an edge.

in which season the corresponding candidate has to take part. The desired
“two-coloring” for the graph can be found using a depth-first search: Choose
an arbitrary vertex and arbitrarily assign one of the two allowed colors to
it. Then start the depth-first search at this vertex. Whenever the depth-first
search comes from a vertex X to a vertex Y that has not been visited before,
Y gets the color that X does not have. If the depth-first search comes from
a vertex X to a vertex Y that has already been visited, check whether X
and Y have different colors. If this is not the case (that is, two vertices of the
same color have been found that are connected by an edge), then it is not
possible to color the graph as desired. Otherwise, the depth-first search will
yield the coloring and provide for exciting entertainment with “Sick Sister”.2

We mention in passing that graphs that can be colored with two colors
as described are called bipartite; they are exactly those graphs that do not
contain a cycle of odd length. If the candidates shall be distributed among
three seasons instead of two, then the task is much more difficult and nobody
knows whether it can be solved efficiently with a depth-first search. (The
problem is that whenever one reaches a vertex that has not been visited
before, one has the choice between two colors and does not know which of
them to take.)

2 In the special case where the sympathy graph consists of several parts—called “connected

components”—that are not connected to each other, then the depth-first search has to
be executed separately for each connected component. This can even provide a way to

distribute the candidates among the seasons as equally as possible (concerning the number

of candidates): just exchange the two colors within some of the connected components.
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Example: Traffic Planning

A further application of depth-first search reads as follows. For the sake of
traffic calming in his town, councilman Hermes wants to declare a number
of streets to be one-way streets. Thereby, Hermes has to beware of incurring
the wrath of the car drivers: he may only prune the street network in such a
way that no isolated “islands” are generated that cannot be entered or left—
that is, it must still be possible to drive from each place to each other place.
In graph theory, one would say that the street network must remain one
single “strongly connected component”. Again, this problem can be solved
efficiently by using depth-first search—Chapter ?? takes a closer look at this
issue.

Breadth-First Search

One problem of depth-first search is that one can quickly move far away
from the start. In many cases, however, it is known that the goal is not too
far; for example in fakebook, it can be assumed that the wanted profile is
at a distance of maybe at most three from the host. In this case, a breadth-
first search is more appropriate: it searches the graph layer-wise from the
start point, that is, first all direct neighbors (distance 1), then all vertices at
distance 2 etc. For this, a data structure called “queue” is used (instead of
a stack as used for depth-first search). A queue allows to append vertices at
the end and to remove the vertex that is currently at the front; in case of
breadth-first search, whenever a vertex is removed from the queue, one jumps
to this vertex. Therefore, breadth-first search is not applicable for searching
a labyrinth: one cannot simply note a junction on a list and “jump” to it on
demand. For many other applications (such as the web search), though, this
is not a problem. The program fragment shown in Fig. 1.7 shows breadth-first
search in detail.

The queue always holds the vertices that still have to be visited. Thus,
initially we add the start vertex to the queue (line 2). As long as the queue
has not become empty, the following is repeated: The first vertex is taken
out (lines 3 and 4), and all neighbors of this vertex are added to the queue
(lines 8 and 9). To avoid searching the neighbors of a vertex more than once,
whenever a vertex has been treated in this way, it is marked as “discovered”
(line 7), and discovered vertices are skipped (line 5).

As an example, we will look at the same graph that has already been used
for depth-first search: the labyrinth (Fig. 1.8). Initially, the queue holds only
the vertex A. This vertex is taken out, and all neighbors of A are appended;
this is only C. The resulting queue is depicted next to A. The search continues
with taking out the first element of the queue, which is C. Strictly speaking,
all four neighbors of C would now be added to the queue, but as a small
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BreadthFirstSearch

1 begin // initially, the queue is empty
2 append the start vertex at the end of the queue;

3 while queue is not empty
4 take the first vertex X from the queue;

5 if state[X ] 6= “discovered” then

6 if X = goal then exit “Goal found!”; endif
7 state[X ] := “discovered”;

8 for each neighboring vertex Y of X

9 append Y at the end of the queue;
10 end for

11 endif

12 end while
13 end

Fig. 1.7 Program code for breadth-first search.
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Fig. 1.8 Example for breadth-first search in the labyrinth

optimization we ignore A, since it is already discovered and would not have
any effect when taken out of the queue. Thus, B, E, and D are added. At B,
no new vertices are added, and we continue directly at E. There, G and F
are appended, while C is being ignored. At D, again nothing happens, and
we continue at G. Here H is appended, but at F we already find the goal.

It is easy to see that the order in which vertices are visited is very different
than with depth-first search (Fig. 1.1). In breadth-first, vertices are visited
in order of their distance from the start vertex: first vertex C (distance 1),
then B, E, and D (distance 2), finally G and F (distance 3). This also implies
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that breadth-first always finds a shortest possible path to the goal, and does
not consider longer paths in-between.

Incidentally, if a stack is used here instead of a queue, then the algorithm
executes a depth-first search instead of a breadth-first search. In contrast to
algorithm DepthFirstSearch II, however, the stack is not used to store
the return path, but to memorize the junctions to which corridors have been
seen but that have not been visited immediately. Therefore, the stack can be
significantly larger than with DepthFirstSearch II.

What to choose now with a concrete problem, depth-first search or
breadth-first search? Depth-first search is usually slightly easier to imple-
ment, since by using recursion, it is not necessary to explicitly maintain a
data structure like the queue of breadth-first search. Further, breadth-first
search usually uses more memory; for difficult problems, it can even hap-
pen that available memory is not sufficient. On the other hand, breadth-first
search always finds a shortest path (with respect to the number of edges)
and is fast in particular when the graph is very large, but the goal is close to
the start; in this case, depth-first search can easily get lost in more distant
regions. Thus, which algorithm is the better one depends on the situation at
hand.

Further Reading

• Presentations on depth-first search can be found in most algorithm text
books.

• Chapter ?? (Cycles in Graphs)
In this chapter, another application for depth- and breadth-first search is
shown.

• Chapter ?? (Pledge’s Algorithm)
In our labyrinth example, we assumed that standing at a junction, we can
see all exits. But what happens when our torch extinguishes and we are
in the dark? Even then it is possible to find the goal; how to do that is
explained in Chapter ??.

• Chapter ?? (Shortest Paths)
Breadth-first search finds a shortest path if the measure is the number of
vertices passed. Often, though, the distances between vertices are different,
and we want a path where the sum of the length of the edges is as small
as possible. This problem is treated in Chapter ??.

“Everything on earth can be found, if only you do not let yourself be put off search-
ing.”

Philemon of Syracuse (ca. 360BC– 264BC)


