
Compression-Based Fixed-Parameter

Algorithms for Feedback Vertex Set

and Edge Bipartization 1

Jiong Guo a,2 Jens Gramm b,3 Falk Hüffner a,2 Rolf Niedermeier a

Sebastian Wernicke a,4

aInstitut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2,

D-07743 Jena, Germany

bWilhelm-Schickard-Institut für Informatik, Universität Tübingen, Sand 13,

D-72076 Tübingen, Germany

Abstract

We show that the NP-complete Feedback Vertex Set problem, which asks for
the smallest set of vertices to remove from a graph to destroy all cycles, is deter-
ministically solvable in O(ck ·m) time. Here, m denotes the number of graph edges,
k denotes the size of the feedback vertex set searched for, and c is a constant. We
extend this to an algorithm enumerating all solutions in O(dk ·m) time for a (larger)
constant d. As a further result, we present a fixed-parameter algorithm with runtime
O(2k · m2) for the NP-complete Edge Bipartization problem, which asks for at
most k edges to remove from a graph to make it bipartite.

Key words: fixed-parameter tractability, iterative compression, graph algorithm,
graph modification problem, feedback set problem

Email addresses: guo@minet.uni-jena.de (Jiong Guo),
gramm@informatik.uni-tuebingen.de (Jens Gramm),
hueffner@minet.uni-jena.de (Falk Hüffner), niedermr@minet.uni-jena.de
(Rolf Niedermeier), wernicke@minet.uni-jena.de (Sebastian Wernicke).
1 An extended abstract of this work appears under the title “Improved Fixed-
Parameter Algorithms for Two Feedback Set Problems” in the proceedings of the
9th Workshop on Algorithms and Data Structures (WADS 2005), volume 3608 of
LNCS, pages 158–168. Springer, Aug. 2005.
2 Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4.
3 Supported by the Deutsche Forschungsgemeinschaft, project OPAL (optimal so-
lutions for hard problems in computational biology), NI 369/2.
4 Supported by the Deutsche Telekom Stiftung and the Studienstiftung des

Preprint submitted to Elsevier Science 27 February 2006

1 Introduction

In feedback set problems the task is, given a graph G and a collection C of
cycles in G, to find a minimum size set of vertices or edges that meets all
cycles in C. We refer to Festa, Pardalos, and Resende [16] for a 1999 survey.
In this work we restrict our attention to undirected and unweighted graphs,
giving significantly improved exact algorithms for two NP-complete feedback
set problems.

• Feedback Vertex Set (FVS): Here, the task is to find a minimum car-
dinality set of vertices that meets all cycles in the graph.

• Edge Bipartization: Here, the task is to find a minimum cardinality set
of edges that meets all odd-length cycles in the graph. 5

Concerning the FVS problem, it is known that an optimal solution can be
approximated to a factor of 2 in polynomial time [3]. The best known lin-
ear -time approximation algorithm has approximation factor 4 [4]. FVS is
MaxSNP-hard [23] (hence, there is no hope for polynomial-time approxima-
tion schemes). A question of similar importance as approximability is to ask
how fast one can find an optimal feedback vertex set. There is a simple and el-
egant randomized algorithm due to Becker, Bar-Yehuda, and Geiger [5] which
solves the FVS problem in O(c · 4k · kn) time by finding a feedback vertex
set of size k with probability at least 1 − (1 − 4−k)c4k

for an arbitrary con-
stant c. Note that this means that by choosing an appropriate value c, one
can achieve any constant error probability independent of k. As to determin-
istic algorithms, Bodlaender [6] and Downey and Fellows [11] were the first
to show that the problem is fixed-parameter tractable, i.e., that the combi-
natorial explosion when solving it can be confined to the parameter k. An
exact algorithm with runtime O((2k + 1)k · n2) was described by Downey and
Fellows [12]. In 2002, Raman, Saurabh, and Subramanian [29] made a signif-
icant step forward by proving the upper bound O(max{12k, (4 log k)k} · nω)
(where nω denotes the time to multiply two n × n integer matrices). This
bound was slightly improved to O((2 log k + 2 log log k + 18)k · n2) by Kanj,
Pelsmajer, and Schaefer [21] using results from extremal graph theory. Fi-
nally, Raman, Saurabh, and Subramanian [30] published an algorithm running
in O((12 log k/log log k + 6)k · nω) time.

The central question left open was whether there is an O(ck · nO(1)) time algo-
rithm for FVS for some constant c. We settle this by giving an O(ck ·mn) time

deutschen Volkes.
5 That is, the deletion of those edges would make the graph bipartite. Note that
the task of finding a minimum cardinality set of edges that meets all cycles is the
well-known Minimum Spanning Tree problem, which can be solved in polynomial
time [7].

2

algorithm. Independently, this result was also shown for c ≈ 10.6 by Dehne
et al. [9]. Surprisingly, although both studies were performed completely inde-
pendent of each other, the developed algorithms turn out to be quite similar.
The advantage of the result by Dehne et al. is a better worst-case upper bound
on the constant c, whereas our advantage seems to be a more compact and
accessible presentation of the algorithm. Since it seems hard to bring the con-
stant c close to the constant 4 achieved by the randomized algorithm of Becker
et al., the described deterministic algorithms for FVS are of more theoretical
interest.

Other than the result of Dehne et al. [9] we also show that FVS can be solved
deterministically in linear time for constant k, a property which also holds for
the randomized algorithm. Hence, with a corresponding O(ck·m) algorithm, we
can conclude that FVS is linear-time fixed-parameter tractable. Very recently,
Fiorini et al. [17] showed, by significant technical expenditure, the analogous
result concerning the Graph Bipartization problem (which is basically
the same problem as Edge Bipartization, only deleting vertices instead of
edges) restricted to planar graphs.

The approaches mentioned above address the fixed-parameter tractability of
finding one solution of size at most k. Parameterized enumeration, i.e., the
question whether it is fixed-parameter tractable to find all minimal solutions
of size at most k, has lately attracted some interest [8,15]. Concerning feedback
set problems, Schwikowski and Speckenmeyer studied “classical algorithms”
for enumerating minimal solutions [32]. Extending our above algorithm, we
show in this work how to enumerate all minimal feedback vertex sets of size
at most k in O(ck · m) time.

We also note that, without a change in runtime, both presented FVS algo-
rithms (for finding one minimal solution and enumerating all minimal solu-
tions) can solve a more general problem introduced in [4] where some graph
vertices are marked as “blackout” and may not be part of the feedback vertex
set.

We now turn our attention to the Edge Bipartization problem, also known
as (unweighted) Minimum Uncut. This problem is known to be MaxSNP-
hard [26] and can be approximated to a factor of O(

√
log n) in polynomial

time [1]. Another approximation algorithm finds in polynomial time a solu-
tion of size O(k log k), where k is the size of an optimal solution [2]. Assuming
Khot’s Unique Games Conjecture, it is NP-hard to approximate Edge Bi-
partization within any constant factor [22]. The problem has applications
in genome sequence assembly [27] and VLSI chip design [20].

In a recent breakthrough paper, Reed, Smith, and Vetta [31] proved that the
Graph Bipartization problem is solvable in O(4k · kmn) time, where k

3

denotes the number of vertices to be deleted for making the graph bipartite.
(Actually, it is straightforward to observe that the exponential factor 4k can
be lowered to 3k by a more careful analysis of the algorithm [19].) Since there
is a “parameter-preserving” reduction from Edge Bipartization to Graph
Bipartization [33], one can use the algorithm by Reed et al. to directly ob-
tain a runtime of O(3k ·k3m2n) for Edge Bipartization, k denoting the size
of the set of edges to be deleted. In this work our main concern is to shrink the
combinatorial explosion and the polynomial complexity related to the fixed-
parameter tractability of Edge Bipartization. We achieve an algorithm
running in O(2k · m2) time. This shows that we can shrink the combinatorial
explosion from 3k to 2k and additionally save a cubic-time factor k3 as well as
a linear-time factor n.

From a different perspective, our above results are examples for the versatility
of a new algorithmic technique called “iterative compression” [31]. It is dis-
cussed in more detail in the following sections, and our paper can also be seen
as a gentle introduction to this new tool for fixed-parameter algorithm design.
A more extensive introduction to iterative compression can be found in [18].

2 Preliminaries

This work considers undirected graphs G = (V, E) with n := |V | and m := |E|.
Given a set E ′ ⊆ E of edges, V (E ′) denotes the set

⋃

{u,v}∈E′{u, v} of their
endpoints. We use G[X] to denote the subgraph of G induced by the vertices
in X ⊆ V . For a set of edges E ′ ⊆ E, we write G \ E ′ for the graph (V, E\E ′).
For u ∈ V , we use N(u) to denote the neighbor set {v ∈ V : {u, v} ∈ E}.
The length of a path in a graph is the number of its edges. With a side of a
bipartite graph G, we mean one of the two classes of an arbitrary but fixed
two-coloring of G. An edge cut between two disjoint vertex sets in a graph
is a set of edges whose removal disconnects these two sets in the graph. For
a minimization problem, a feasible solution is called minimal if it does not
contain another feasible solution as a proper subset and minimum if there is
no other feasible solution with better measure.

The two problems we study are formally defined as follows:

Feedback Vertex Set (FVS)
Input: An undirected graph G = (V, E) and a nonnegative integer k.
Task: Find a subset V ′ ⊆ V of vertices with |V ′| ≤ k such that each cycle
in G contains at least one vertex from V ′. (The removal of all vertices in V ′

from G results in a forest.)

Edge Bipartization

4

Input: An undirected graph G = (V, E) and a nonnegative integer k.
Task: Find a subset E ′ ⊆ E of edges with |E ′| ≤ k such that each odd-
length cycle in G contains at least one edge from E ′. (The removal of all
edges in E ′ from G results in a bipartite graph.)

We investigate FVS and Edge Bipartization in the context of parameter-
ized complexity [12,25] (see [14,24] for surveys). A parameterized problem is
fixed-parameter tractable if it can be solved in f(k) · nO(1) time where f is
a computable function solely depending on the parameter k and not on the
input size n.

To the best of our knowledge, Reed et al. [31] were the first to make the
following simple but fruitful observation: To show that a minimization prob-
lem is fixed-parameter tractable with respect to the size of the solution k, it
often suffices to give a fixed-parameter algorithm that, given a size-(k + 1)
solution, either proves that there is no size-k solution or constructs one. Start-
ing with a trivial instance and inductively applying this compression rou-
tine a linear number of rounds to larger instances, one obtains the fixed-
parameter tractability of the problem. This method is called iterative com-
pression. The main challenge of applying it lies in showing that there is a
“fixed-parameter compression routine.” It is this hard part where Reed et al.
achieved a breakthrough concerning Graph Bipartization. The compres-
sion routine, however, is highly problem-specific and no universal standard
techniques are known.

3 Algorithm for Feedback Vertex Set

In this section we show that Feedback Vertex Set can be solved in O(ck · m)
time for a constant c by presenting an algorithm based on iterative compres-
sion. The central part is the compression routine which, given a feedback
vertex set (fvs) X, produces a smaller one if it exists. To make this easier, we
restrict our search to solutions that are disjoint from the known solution. This
restriction can be achieved without loss of generality at the cost of a factor
of 2|X| in the runtime by using a brute-force enumeration of all partitions of X
into a part Y to keep and a part S to exchange in the smaller solution; the
vertices in Y can then be immediately deleted, and we arrive at the following
task.

Task 1 Given a graph G = (V, E) and an fvs S for G, find a minimum fvs S ′

for G with S ′ ∩ S = ∅.

To solve Task 1, we make use of simple data reduction rules mostly known
from the literature [5,29], and then show that the remaining instance is small

5

A

B

C

S

Fig. 1. Partition of the vertices in V ′ into three disjoint subsets A, B, and C.

enough to be solved in O(ck · m) time by brute force.

Reduction Rule 1 In an instance of Task 1, remove degree-1 vertices.

Reduction Rule 2 In an instance of Task 1, if there is a degree-2 ver-
tex v ∈ S with two neighbors v1 and v2, where v1 /∈ S or v2 /∈ S, then remove v
and connect v1 and v2. If this creates two parallel edges between v1 and v2, then
remove the vertex of v1 and v2 that is not in S and add it to any solution for
the reduced instance.

Lemma 1 Reduction Rules 1 and 2 are correct and can be executed in O(m)
time.

PROOF. Reduction Rule 1 is correct because degree-1 vertices are not con-
tained in any cycle. Reduction Rule 2 is correct because deleting any of v1

and v2 destroys all cycles that contain v. In the case that a parallel edge is
created, exactly one of v1 and v2 is in S because S is an fvs of G and G[S]
contains no cycle unless there is no solution. Thus, we have to delete the other
endpoint since we are not allowed to take vertices from S.

The runtime bound is straightforward to obtain and we omit its proof here. 2

Lemma 2 An instance of Task 1 that is reduced with respect to Reduction
Rules 1 and 2 and has a solution S ′ with |S ′| < |S| contains at most 15|S|
vertices.

PROOF. Let G = (V, E) be a reduced instance and V ′ := V \ S. We par-
tition V ′ into three subsets, each of which will have a provable size bound
linearly dependant on |S| (the partition is illustrated in Figure 1):

A := {v ∈ V ′ : |N(v) ∩ S| ≥ 2},
B := {v ∈ V ′ \ A : |N(v) ∩ V ′| ≥ 3},
C := V ′ \ (A ∪ B).

6

To upper-bound the number of vertices in A, consider the bipartite subgraph
GA := (A ∪̇ S, EA) of G with EA := (A × S) ∩ E. Observe that if there are
more than |S| − 1 vertices in A, then there is a cycle in GA: If GA is acyclic,
then GA is a forest, and, thus, |EA| ≤ |S| + |A| − 1. Moreover, since each
vertex in A has at least two incident edges in GA, |EA| ≥ 2|A|, which implies
that |A| ≤ |S| − 1 if GA is acyclic. It follows directly that if |A| ≥ 2|S|, it is
impossible to delete at most |S| vertices from A such that G′[A∪S] is acyclic.

To upper-bound the number of vertices in B, observe that G[V ′] is a forest.
Furthermore, all leaves of the trees in G[V ′] are from A since G is reduced
with respect to Reduction Rules 1 and 2. By the definition of B, each vertex
in B is an internal vertex of degree at least three in the forest induced by V ′.
Thus, there cannot be more vertices in B than in A, and therefore |B| < 2|S|.

Finally, consider the vertices in C. By the definitions of A and B, and since G
is reduced, each vertex in C has degree two in G[V ′] and exactly one neighbor
in S. Hence, graph G[C] is a forest consisting of paths and isolated vertices.
We now separately upper-bound the number of isolated vertices and those
participating in paths.

Each of the isolated vertices in G[C] connects two vertices from A∪B in G[V ′]
and no pair of vertices from A∪B is connected by more than one such vertex.
Since G[V ′] is acyclic, this means that the number of isolated vertices in G[C]
cannot exceed |A ∪ B| − 1 < 4|S|.

The total number of vertices participating in paths in G[C] can be upper-
bounded as follows: Consider the subgraph G[C∪S]. Each edge in G[C] creates
a path between two vertices in S, that is, if |E(G[C])| ≥ |S|, then there exists
a cycle in G[C ∪ S]. Removing a vertex from G[C] destroys at most two
edges from E(G[C]). Hence, the total number of edges in E(G[C]) must not
exceed 6|S|; otherwise, at least 2|S| edges remain after at most |S| vertices
from C have been deleted, leaving at least one cycle in the remaining graph.

Altogether, |V ′| = |A| + |B| + |C| < 2|S| + 2|S| + (4 + 6)|S| = 14|S|. 2

Having established the linear size bound for the vertex set of a reduced instance
in Lemma 2, we can now provide the compression routine for our Feedback
Vertex Set algorithm.

Lemma 3 Given a graph G and a size-(k + 1) fvs X for G, we can decide
in O(ck ·m) time for some constant c whether there exists a size-k fvs X ′ for G
and if so provide one.

7

PROOF. Consider the smaller fvs X ′ as a modification of the larger fvs X.
The smaller fvs retains some vertices Y ⊆ X while the other vertices S :=
X \ Y are replaced by |S| − 1 new vertices from V \ X. The idea is to try by
brute force all 2|X| partitions of X into such sets Y and S. For each partition,
the vertices from Y are immediately deleted and it remains to solve Task 1
for G′ := G[V \ Y] and S. For this, we first check that S does not induce a
cycle; otherwise, no S ′ with S ′ ∩ S = ∅ can be an fvs for G′. We then apply
Reduction Rules 1 and 2 exhaustively to G′, which can be done in O(m)
time by Lemma 1. We have shown in Lemma 2 that the size of the set of
candidates V ′ for a solution S ′ with |S ′| < |S| is upper-bounded by 14|S|.
Since |S| ≤ k + 1, |V ′| thus only depends on the problem parameter k and
not on the input size. We again use brute force and consider each of the
at most

(

14|S|
|S|−1

)

possible choices of vertices from V ′ that can be added to Y

to form X ′. The test whether a choice of vertices from V ′ together with Y
forms an fvs can easily be done in O(m) time. We can now bound the overall
runtime T , where the index i corresponds to a partition of X into Y and S
with |Y | = i and |S| = |X| − i:

T = O

(

k
∑

i=0

(

|X|
i

)

·
(

O(m) +

(

14(|X| − i)

|X| − i − 1

)

· O(m)

))

= O

(

2k · m +
k+1
∑

i=0

(

k + 1

i

)

·
(

14(k + 1 − i)

k + 1 − i

)

· m
)

and with Stirling’s inequality to evaluate the second binomial coefficient,

= O

(

2k · m +
k+1
∑

i=0

(

k + 1

i

)

(36.7)k+1−i · m
)

= O((1 + 36.7)k · m),

which gives the lemma’s claim with c ≈ 37.7. 6
2

Theorem 4 Feedback Vertex Set can be solved in O(ck · mn) time for
a constant c.

PROOF. Given as input a graph G with vertex set {v1, . . . , vn}, we can
solve Feedback Vertex Set for G by iteratively considering the subgraphs
Gi := G[{v1, . . . , vi}]. For i = 1, the optimal fvs is empty. For i > 1, assume
that an optimal fvs Xi for Gi is known. Obviously, Xi∪{vi+1} is an fvs for Gi+1.
Using Lemma 3, we can in O(ck ·m) time either determine that Xi ∪{vi+1} is
an optimal fvs for Gi+1, or, if not, compute an optimal fvs for Gi+1. For i = n,
we thus have computed an optimal fvs for G in O(ck · mn) time. 2

6 The value of c can be significantly improved by a more careful analysis in
Lemma 2. Indeed, Dehne et al. [9] achieve c ≈ 10.6.

8

Theorem 4 shows that FVS is fixed-parameter tractable with the combinato-
rial explosion bounded from above by ck for some constant c. Next, we show
that FVS is also linear-time fixed-parameter tractable (with the combinatorial
explosion still bounded by ck, however for a larger constant c). An analogous
result for Graph Bipartization restricted to planar graphs was shown by
Fiorini et al. [17], accepting a much worse combinatorial explosion compared
to [31].

Theorem 5 Feedback Vertex Set can be solved in O(ck · m) time for a
constant c.

PROOF. We first calculate in O(m) time a factor-4 approximation as de-
scribed by Bar-Yehuda et al. [4]. This gives us the precondition for Lemma 3
with |X| = 4k instead of |X| = k + 1. Now, we can employ the same tech-
niques as in the proof of Lemma 3 to obtain the desired runtime: we exam-
ine 24k partitions S ∪̇Y of X, and—by applying the reduction rules and using
Lemma 2—for each partition there is some constant c′ such that the number of
candidate vertices is bounded from above by c′ · |S|. In summary, there is some
constant c such that the runtime of the compression routine is bounded from
above by O(ck · m). Since one of the 24k partitions must lead to the optimal
solution of size k, we need only one call of the compression routine to obtain
an optimal solution, which proves the claimed runtime bound. 2

Note that any improvement of the approximation factor of a linear-time ap-
proximation algorithm for Feedback Vertex Set below 4 will immediately
improve the constant c in the runtime of the exact algorithm described in The-
orem 5.

4 Enumerating Minimal Feedback Vertex Sets

In this section we show that in O(ck · m) time for a constant c we can not
only find one feedback vertex set of size k but even enumerate all minimal
feedback vertex sets of size at most k. Since, in general, there may be more
than O(ck · m) many such vertex sets, we list compact representations of all
minimal feedback vertex sets. A compact representation for a set of minimal
feedback vertex sets of a graph G = (V, E) is a set C of pairwise disjoint
subsets of V such that choosing exactly one vertex from every set in C results
in a minimal feedback vertex set for G.

Naturally, a set in C may also contain exactly one vertex; then this vertex is in
every minimal feedback vertex set represented by C. This notion of compact

9

representations allows us to easily expand a compact representation to the set
of minimal feedback vertex sets it represents and to enumerate the compact
representations of all minimal feedback vertex sets within the claimed time
bound.

Recall that, in order to compress a size-(k + 1) fvs X to a size-k fvs X ′, the
algorithm in Section 3 first tries all partitions of X into Y and S under the
assumption that Y ⊆ X ′ and S ∩ X ′ = ∅. After deleting the vertices in Y ,
Reduction Rules 1 and 2 are applied to reduce the instance with respect to
its degree-1 and degree-2 vertices. These reduction rules are based on the
observation that there is always an optimal solution for FVS without degree-1
and degree-2 vertices (assuming the input graph does not contain a connected
component that is a cycle of degree-2 vertices). In contrast, to enumerate all
minimal feedback vertex sets, the degree-2 vertices cannot be reduced any
more because some of these might contain degree-2 vertices. Observe that
the number of the vertices with degree higher than two in the graph after
deleting the vertices in Y is upper-bounded by 14|S| as follows from Lemma 2.
Moreover, since degree-1 vertices cannot contribute to a minimal feedback
vertex set we can still eliminate all degree-1 vertices as in Section 3. Then
compared to finding one feedback vertex set with at most k vertices, the only
problem with enumeration is how to deal with degree-2 vertices. The solution
to this problem is to use compact representations as detailed in the proof of
the following lemma.

Lemma 6 Given a graph G and an fvs X for G of size k+1, we can enumerate
compact representations of all minimal feedback vertex sets for G having size
at most k in O(ck · m) time for a constant c.

PROOF. We show this lemma by constructing all compact representations
in the claimed time bound.

Consider a minimal fvs X ′ with at most k vertices. In comparison to X, the
fvs X ′ retains some vertices Y ⊆ X and replaces the vertices in S := X \Y by
at most |S|−1 new vertices from V \X. Therefore, we begin with a branching
into 2k+1 cases corresponding to all such partitions of X.

In each case the compact representation is initialized as C := {{v} : v ∈ Y }.
As in the proof of Lemma 3, we delete the vertices in Y and all degree-1
vertices from G. Let G′ = (V ′, E ′) denote the resulting graph. We partition V ′

into three sets V ′
≥3, V ′

=2, and S, where V ′
≥3 contains the vertices with degree

at least 3 in V ′ \ S and V ′
=2 the degree-2 vertices in V ′ \ S. Since the two

reduction rules do not change V ′
≥3, |V ′

≥3| ≤ 14|S| due to Lemma 2. We then

make a further branching into at most
∑|S|−1

l=0

(

14|S|
l

)

cases; in each case, C is

extended by l one-element sets {{v} : v ∈ V ′
≥3} for 0 ≤ l ≤ |S| − 1. In each

10

of these cases we delete from G′ those vertices in V ′
≥3 which are added to C

and we successively reduce the degree-1 vertices as they cannot participate in
a minimal fvs. Let G′′ = (V ′′, E ′′) denote the resulting graph and V ′′

=2 denote
the set of degree-2 vertices in V ′′ \ S. If G′′ is empty, then we have a compact
representation C. Otherwise, the cycles in G′′ can only be destroyed by deleting
degree-2 vertices.

In G′′, we identify every maximal path of vertices v1, v2, . . . , vr where vi ∈ V ′′
=2

for i = 1, . . . , r, vi is adjacent to vi+1 for i = 1, . . . , r − 1, and both v1 and
vr are adjacent to vertices in V ′′ \ V ′′

=2. Clearly, a minimal feedback vertex
set may contain at most one vertex from such a path. If it does contain one
vertex from a path, then it does not matter which vertex is chosen. Therefore,
since we are aiming for a compact representation of a minimal feedback vertex
set, we save all these maximal paths in a set P, i.e., P := {{v1, v2, . . . , vr} :
v1, v2, . . . , vr ∈ V ′′

=2 form a maximal path}.

Having obtained P in this way, we now show that |P| ≤ 16 · |S|. To this end,
we define a bipartite graph B which on one side has as vertices the elements of
P and on the other side the vertices in V ′′ \V ′′

=2. An element of P has an edge
to a vertex v in V ′′\V ′′

=2 iff one endpoint of its corresponding maximal path has
an edge to v in G′′. Note that there can be multiple edges between an element
of P and a vertex in V ′′ \ V ′′

=2. Completing C to a compact representation
of minimal feedback vertex sets having size at most k is now equivalent to
selecting at most |S| − l − 1 many elements of P to eliminate all cycles in B.

We can now infer that

|P| ≤ |V ′′ \ V ′′
=2| + (|S| − l − 1);

otherwise, it would not be possible to remove all cycles from B by deleting
|S| − l − 1 elements of P. Therefore,

|P| ≤ |V ′′ \ V ′′
=2| + (|S| − l − 1) ≤ |V ′

≥3| + |S| + |S| = 16|S|.

Now, we make the last branching into
∑|S|−l−1

j=0

(

16|S|
j

)

cases; each case rep-

resents a choice of at most |S| − l − 1 elements from P. For a case where
the resulting graph by deleting these chosen elements from B is cycle-free, we
extend C by the chosen elements.

Altogether, we have at most 2k+1 partitions of X, and for each partition at
most

∑|S|−1
l=0

(

14|S|
l

)

cases corresponding to the choices of vertices with degree

more than two, and then for each possible choice of vertices in V ′
≥3, we have

further
∑|S|−l−1

j=0

(

16|S|
j

)

choices for degree-2 vertices in compact form. In sum-

11

mary, the compact representations can be computed in

O



2k+1 ·
k−1
∑

l=0

(

14k

l

)

·
k−l−1
∑

j=0

(

16k

j

)

· m




=O

(

2k+1 ·
k−1
∑

l=0

(

14k

l

)

·
(

16k

k − l − 1

)

· m
)

=O

(

2k+1 ·
(

30k

k − 1

)

· m
)

=O(ck · m)

time for a constant c. 2

Together with Theorem 5, we have the following result:

Theorem 7 All minimal feedback vertex sets of size at most k can be enu-
merated in O(ck · m) time for a constant c.

5 Algorithm for Edge Bipartization

In this section we present a new algorithm for Edge Bipartization which
runs in O(2k · m2) time. The algorithm is structurally similar to the O(3k·kmn)
time iterative compression algorithm for Graph Bipartization given by
Reed et al. [31,19]. As many other known compression routines (such as the
one from Section 3), it starts by enumerating all partitions of the known
solution into two parts, one containing vertices to keep in the solution and one
containing the vertices to exchange. This is followed by a second step that tries
to find a compressed bipartization set under this constraint. By enforcing that
the smaller solution is disjoint from the known one, our algorithm for Edge
Bipartization does not need the first step, thereby significantly reducing
the combinatorial explosion.

We remark that a similar runtime of 2k · nO(1) for Edge Bipartization
can be achieved by first reducing the input instance to Graph Biparti-
zation [33], and then exploiting a solution disjointness property analogous
to the algorithm presented below. This, however, involves several nontrivial
modifications to the algorithm of Reed et al. whereas we give a self-contained
presentation here. Moreover, our proof reveals details about the structure of
Edge Bipartization that might be of independent interest.

The following lemma provides some central insight into the structure of a
minimal edge bipartization set.

12

Fig. 2. A graph (left) with an edge bipartization set X (dashed lines). To be able to
assume without loss of generality that a bipartization set smaller than X is disjoint
from X, we subdivide each edge in X by two vertices and choose the middle edge
from each thus generated path as the new X (right).

Lemma 8 Given a graph G = (V, E) and a minimal edge bipartization set X
for G, the following two properties hold:

(1) For every odd-length cycle C in G, |E(C) ∩ X| is odd.
(2) For every even-length cycle C in G, |E(C) ∩ X| is even.

PROOF. For each edge e = {u, v} ∈ X, note that u and v are on the same
side of the bipartite graph G \X since otherwise we do not need e to be in X
and X would not be minimal. Consider a cycle C in G. The edges in E(C)\X
are all between the two sides of G\X, while the edges in E(C)∩X are between
vertices of the same side as argued above. In order for C to be a cycle, however,
this implies that |E(C) \X| is even. Since |E(C)| = |E(C) \X|+ |E(C)∩X|,
we conclude that |E(C)| and |E(C) ∩ X| have the same parity. 2

As mentioned above, it is helpful to assume that an edge bipartization set
which is smaller than a given edge bipartization set X is disjoint from X.
This can be assumed without loss of generality by applying a simple input
transformation (see Figure 2). Since this transformation preserves the parities
of the lengths of all cycles, it is easy to see that the thus transformed graph
has an edge bipartization set with i edges iff the original graph has an edge
bipartization set with i edges. Moreover, for each edge bipartization set Y for
the transformed graph there is an edge bipartization set of the same size that
is disjoint from X, which can be obtained by replacing every edge in Y ∩ X
by one of its two adjacent edges.

The following simple definition is the only remaining prerequisite for the cen-
tral lemma of this section.

Definition 9 Let G = (V, E) be a graph and X ⊆ E. A mapping Φ :
V (X) → {A, B} is called valid partition of V (X) if for each {u, v} ∈ X,
we have Φ(u) 6= Φ(v).

Lemma 10 Consider a graph G = (V, E) and a minimal edge bipartization
set X for G. For a set of edges Y ⊆ E with X ∩ Y = ∅, the following are

13

Fig. 3. A graph G with two disjoint edge bipartization sets X marked by dot-

ted lines and Y marked by dashed lines. The left circle in each vertex denotes a
two-coloring CX for G\X, and the right circle denotes a two-coloring CY for G\Y .
Vertices v with CX(v) 6= CY (v) are shaded, corresponding to Φ as defined in the
proof of Lemma 10.

equivalent:

(1) Y is an edge bipartization set for G.
(2) There is a valid partition Φ of V (X) such that Y is an edge cut in G \ X

between AΦ := Φ−1(A) and BΦ := Φ−1(B).

PROOF. (2) ⇒ (1): Consider any odd-length cycle C in G. It suffices
to show that E(C) ∩ Y 6= ∅. Let s := |E(C) ∩ X|. By Property (1) in
Lemma 8, s is odd. Without loss of generality, we assume that E(C) ∩ X =
{{u0, v0}, . . . , {us−1, vs−1}} with vertices vi and u(i+1) mod s being connected
by a path in C \ X. Since Φ is a valid partition, we have Φ(ui) 6= Φ(vi) for
all 0 ≤ i < s. With s being odd, this implies that there is a pair vi, u(i+1) mod s

such that Φ(vi) 6= Φ(u(i+1) mod s). Since the removal of Y destroys all paths
in G \ X between AΦ and BΦ, we obtain that E(C) ∩ Y 6= ∅.

(1) ⇒ (2): Let CX : V → {A, B} be a two-coloring of the bipartite graph G\X
and CY : V → {A, B} a two-coloring of the bipartite graph G \ Y . Define

Φ : V → {A, B}, v 7→






A if CX(v) = CY (v),

B otherwise.

We show that Φ|V (X) (that is, Φ with domain restricted to V (X)) is a valid
partition with the desired property (see Figure 3 for an example).

First we show that Φ|V (X) is a valid partition. Consider any edge {u, v} ∈ X.
There must be at least one even-length path in G \ X from u to v; other-
wise, {u, v}would be redundant as X would not be minimal. Therefore, CX(u) =

14

CX(v). In G \ Y , the vertices u and v are connected by an edge, and there-
fore CY (u) 6= CY (v). It follows that Φ(u) 6= Φ(v).

Since both CX and CY change in value when going from a vertex to its neighbor
in G \ (X ∪ Y), the value of Φ is constant along any path in G \ (X ∪ Y).
Therefore, there can be no path from any u ∈ AΦ to any v ∈ BΦ in G\(X∪Y),
that is, Y is an edge cut between AΦ and BΦ in G \ X. 2

Theorem 11 Edge Bipartization can be solved in O(2k · m2) time.

PROOF. Given as input a graph G with edge set {e1, . . . , em}, we can apply
iterative compression to solve Edge Bipartization for G by iteratively con-
sidering the graphs Gi induced by the edge set {e1, . . . , ei} for i = 1, . . . , m.
For i = 1, the optimal edge bipartization set is empty. For i > 1, assume
that an optimal edge bipartization set Xi−1 with |Xi−1| ≤ k for Gi−1 is
known. If Xi−1 is not an edge bipartization set for Gi, then we consider the
set Xi−1 ∪ {ei}, which obviously is a minimal edge bipartization set for Gi.
Using Lemma 10, we can in O(2k′ ·k′i) time (where k′ := |Xi−1∪{ei}| ≤ k+1)
either determine that Xi−1∪{ei} is an optimal edge bipartization set for Gi or
otherwise compute an optimal edge bipartization set Xi for Gi. This process
can be aborted if |Xi| > k, since then no solution exists. Summing over all
iterations, we have an algorithm that computes an optimal edge bipartization
set for G in O(

∑m
i=1 2k+1 · ki) = O(2k · km2) time.

It remains to describe the compression routine that, given a graph and a
minimal edge bipartization set X of size k′, either computes a smaller edge bi-
partization set Y in O(2k′ ·k′m) time or proves that no such Y exists. For this,
we first apply the input transformation from Figure 2 which allows us to as-
sume the prerequisite of Lemma 10 that Y ∩X = ∅. We then enumerate all 2k′

valid partitions Φ of V (X) and determine a minimum edge cut between AΦ

and BΦ until we find an edge cut Y of size k′ − 1. Each of the minimum cut
problems can individually be solved in O(k′m) time with the Edmonds–Karp
algorithm that goes through k′ rounds, each time finding a flow augmenting
path [7]. By Lemma 10, Y is an edge bipartization set. Furthermore, if no
such Y is found, we know that k′ is minimum.

With the same technique as used by Hüffner [19, Section 4.1] to improve the
runtime of the iterative compression algorithm for Graph Bipartization,
the runtime can be improved from O(2k ·km2) to O(2k ·m2). For this, one uses
a Gray code to enumerate the valid partitions in such a way that consecutive
partitions differ in only one element. For each of these (but the first one),
one can then solve the flow problem by a constant number of augmentation
operations on the previous network flow in O(m) time. 2

15

6 Conclusion

We presented significantly improved results on the fixed-parameter tractabil-
ity of Feedback Vertex Set and Edge Bipartization. To our belief,
the iterative compression strategy due to Reed et al. [31] employed in this
work will become an important tool in the design of efficient fixed-parameter
algorithms [25].

We proved that FVS is even solvable in linear time for constant parame-
ter value k. Employing a completely different technique, a similar result could
very recently be shown for Graph Bipartization restricted to planar graphs
(where the problem remains NP-complete) [17]. For general Graph Bipar-
tization as well as for Edge Bipartization, this remains an open question
for future research.

Further, we leave it open to explore the practical performance of the described
algorithms. Initial experiments with the closely related Graph Bipartiza-
tion problem [19] make us believe that our algorithms have potential for
applications and experiments. To this end, it would also be useful to develop
data reduction rules and kernelizations (see [12–14,24,25]) for both problems.

It would be interesting to further investigate parameterized enumeration as-
pects of feedback set problems. Schwikowski and Speckenmeyer [32] study
“classical algorithms” for enumerating feedback set problems—it remains to
see how our corresponding result for FVS may contribute to additional “pa-
rameterized achievements” in this direction. Also, the enumeration of edge-
and vertex bipartization sets appears to be an interesting topic for future
research.

Finally, it remains a long-standing open problem whether Feedback Ver-
tex Set on directed graphs is fixed-parameter tractable. The answer to this
question would mean a significant breakthrough in the field. Currently, we
are only aware of fixed-parameter tractability results for the special case of
tournament graphs [28,10].

Acknowledgements

The authors would like to thank the anonymous referees of WADS 2005 for
helpful and inspiring comments and an anonymous referee of the Journal of
Computer and System Sciences for helping to improve the presentation of
results in this work.

16

References

[1] A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(
√

log n)
approximation algorithms for min UnCut, min 2CNF deletion, and directed
cut problems. In Proc. 37th STOC, pages 573–581. ACM Press, 2005.

[2] A. Avidor and M. Langberg. The multi-multiway cut problem. In Proc. 9th

SWAT, volume 3111 of LNCS, pages 273–284. Springer, 2004.

[3] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for
the undirected feedback vertex set problem. SIAM Journal on Discrete

Mathematics, 3(2):289–297, 1999.

[4] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth. Approximation algorithms
for the feedback vertex set problem with applications to constraint satisfaction
and Bayesian inference. SIAM Journal on Computing, 27(4):942–959, 1998.

[5] A. Becker, R. Bar-Yehuda, and D. Geiger. Randomized algorithms for the Loop
Cutset problem. Journal of Artificial Intelligence Research, 12:219–234, 2000.

[6] H. L. Bodlaender. On disjoint cycles. International Journal of Foundations of

Computer Science, 5(1):59–68, 1994.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press, 2nd edition, 2001.

[8] P. Damaschke. Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction. Theoretical Computer Science, 351(3):337–350, 2006.

[9] F. Dehne, M. R. Fellows, M. A. Langston, F. Rosamond, and K. Stevens. An
O(2O(k)n3) FPT algorithm for the undirected feedback vertex set problem. In
Proc. 11th COCOON, volume 3595 of LNCS, pages 859–869. Springer, 2005.
Long version to appear in Theory of Computing Systems.

[10] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, and A. Truß. Fixed-parameter
tractability results for feedback set problems in tournaments. In Proc. 6th

CIAC, LNCS. Springer, 2006. To appear.

[11] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and
completeness. Congressus Numerantium, 87:161–187, 1992.

[12] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[13] M. R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in
FPT. In Proc. 29th WG, volume 2880 of LNCS, pages 1–12. Springer, 2003.

[14] M. R. Fellows. New directions and new challenges in algorithm design and
complexity, parameterized. In Proc. 8th WADS, volume 2748 of LNCS, pages
505–520. Springer, 2003.

[15] H. Fernau. On parameterized enumeration. In Proc. 8th COCOON, volume
2383 of LNCS, pages 564–573. Springer, 2002.

17

[16] P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedback set problems. In
D. Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization,

Vol. A, pages 209–258. Kluwer, 1999.

[17] S. Fiorini, N. Hardy, B. Reed, and A. Vetta. Planar graph bipartization in
linear time. In Proc. 2nd GRACO, Electronic Notes in Discrete Mathematics,
2005. Long version to appear in Discrete Applied Mathematics.

[18] J. Guo. Algorithm Design Techniques for Parameterized Graph Modification

Problems. PhD thesis, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2006.

[19] F. Hüffner. Algorithm engineering for optimal graph bipartization. In Proc. 4th

WEA, volume 3503 of LNCS, pages 240–252. Springer, 2005.

[20] A. B. Kahng, S. Vaya, and A. Zelikovsky. New graph bipartizations for double-
exposure, bright field alternating phase-shift mask layout. In Proc. Asia and

South Pacific Design Automation Conference, pages 133–138, 2001.

[21] I. Kanj, M. Pelsmajer, and M. Schaefer. Parameterized algorithms for feedback
vertex set. In Proc. 1st IWPEC, volume 3162 of LNCS, pages 235–247. Springer,
2004.

[22] S. Khot. On the power of unique 2-prover 1-round games. In Proc. 34th STOC,
pages 767–775. ACM Press, 2002.

[23] C. Lund and M. Yannakakis. The approximation of maximum subgraph
problems. In Proc. 20th ICALP, volume 700 of LNCS, pages 40–51. Springer,
1993.

[24] R. Niedermeier. Ubiquitous parameterization—invitation to fixed-parameter
algorithms. In Proc. 29th MFCS, volume 3153 of LNCS, pages 84–103. Springer,
2004.

[25] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[26] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425–440,
1991.

[27] M. Pop, D. S. Kosack, and S. L. Salzberg. Hierarchical scaffolding with Bambus.
Genome Research, 14(1):149–159, 2004.

[28] V. Raman and S. Saurabh. Parameterized algorithms for feedback set problems
and their duals in tournaments. Theoretical Computer Science, 351(3):446–458,
2006.

[29] V. Raman, S. Saurabh, and C. R. Subramanian. Faster fixed parameter
tractable algorithms for undirected feedback vertex set. In Proc. 13th ISAAC,
volume 2518 of LNCS, pages 241–248. Springer, 2002.

18

[30] V. Raman, S. Saurabh, and C. R. Subramanian. Faster algorithms for feedback
vertex set. In Proc. 2nd GRACO, Electronic Notes in Discrete Mathematics,
2005.

[31] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations

Research Letters, 32(4):299–301, 2004.

[32] B. Schwikowski and E. Speckenmeyer. On enumerating all minimal solutions
of feedback problems. Discrete Applied Mathematics, 117(1–3):253–265, 2002.

[33] S. Wernicke. On the algorithmic tractability of single nucleotide polymorphism
(SNP) analysis and related problems. Diplomarbeit, WSI für Informatik,
Universität Tübingen, 2003.

19

