
Improved Fixed-Parameter Algorithms

for Two Feedback Set Problems

Jiong Guo1,?, Jens Gramm2,??, Falk Hüffner1,?, Rolf Niedermeier1, and
Sebastian Wernicke1,? ? ?

1 Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{guo,hueffner,niedermr,wernicke}@minet.uni-jena.de.
2 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,

Sand 13, D-72076 Tübingen, Germany
gramm@informatik.uni-tuebingen.de.

Abstract. Settling a ten years open question, we show that the NP-
complete Feedback Vertex Set problem is deterministically solvable
in O(ck ·m) time, where m denotes the number of graph edges, k denotes
the size of the feedback vertex set searched for, and c is a constant.
As a second result, we present a fixed-parameter algorithm for the NP-
complete Edge Bipartization problem with runtime O(2k · m2).

1 Introduction

In feedback set problems the task is, given a graph G and a collection C of cycles
in G, to find a minimum size set of vertices or edges that meets all cycles in C.
We refer to Festa, Pardalos, and Resende [9] for a 1999 survey. In this work we
restrict our attention to undirected and unweighted graphs, giving significantly
improved exact algorithms for two NP-complete feedback set problems.

– Feedback Vertex Set (FVS): Here, the task is to find a minimum cardi-
nality set of vertices that meets all cycles in the graph.

– Edge Bipartization: Here, the task is to find a minimum cardinality set
of edges that meets all odd-length cycles in the graph.1

Concerning the FVS problem, it is known that an optimal solution can be
approximated to a factor of 2 in polynomial time [1]. FVS is MaxSNP-hard [15]
(hence, there is no hope for polynomial-time approximation schemes). A ques-
tion of similar importance as approximability is to ask how fast one can find an

? Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group
PIAF (fixed-parameter algorithms), NI 369/4.

?? Supported by the Deutsche Forschungsgemeinschaft, project OPAL (optimal solu-
tions for hard problems in computational biology), NI 369/2.

? ? ? Supported by the Deutsche Telekom Stiftung and the Studienstiftung des deutschen
Volkes. Main work done while the author was with TU München.

1 That is, the deletion of those edges would make the graph bipartite.

optimal feedback vertex set. There is a very simple randomized algorithm due
to Becker et al. [3] which solves the FVS problem in O(c · 4k · kn) time by find-

ing a feedback vertex set of size k with probability at least 1− (1 − 4−k)c4k

for
an arbitrary constant c. Note that this means that by choosing an appropriate
value for c, one can achieve any constant error probability independent of k. As
to deterministic algorithms, Bodlaender [4] and Downey and Fellows [6] were
the first to show that the problem is fixed-parameter tractable. An exact algo-
rithm with runtime O((2k + 1)k · n2) was described by Downey and Fellows [7].
In 2002, Raman, Saurabh, and Subramanian [20] made a significant step forward
by proving the upper bound O(max{12k, (4 log k)k} · nω) (nω denotes the time
to multiply two n × n matrices). Recently, this bound was slightly improved
to O((2 log k + 2 log log k + 18)k · n2) by Kanj, Pelsmajer, and Schaefer [14] us-
ing results from extremal graph theory. Lastly, Raman et al. [21] published an
algorithm running in O((12 log k/log log k + 6)k · nω) time.

The central question left open for more than ten years is whether there is
an O(ck · nO(1)) time algorithm for FVS for some constant c. We settle this open
problem by giving an O(ck ·mn) time algorithm. Independently, this result was
also shown by Dehne et al. [5], proving the constant c ≈ 10.6. Surprisingly,
although both studies were performed completely independent of each other,
the developed algorithms turn out to be quite similar. The advantage of the
result by Dehne et al. is a better upper bound on the constant c, whereas our
advantage seems to be a more compact, easier accessible presentation of the
algorithm. Since it seems hard to bring the constant c close to the constant 4
achieved by Becker et al., the described deterministic algorithms for FVS are of
more theoretical interest.

Compared with Dehne et al. our algorithm also shows that FVS can be solved
deterministically in linear time for constant k, a property which also holds for
the randomized algorithm. Hence, with our corresponding O(ck ·m) algorithm we
can conclude that FVS is “linear-time fixed-parameter tractable.” Very recently,
Fiorini et al. [10] showed, by significant technical expenditure, the analogous
result concerning the Graph Bipartization problem (which is basically the
same problem as Edge Bipartization, only deleting vertices instead of edges)
restricted to planar graphs.

We now turn our attention to the Edge Bipartization problem. This prob-
lem is known to be MaxSNP-hard [18] and can be approximated to a factor
of O(log n) in polynomial time [11]. It has applications in genome sequence as-
sembly [19] and VLSI chip design [13]. In a recent breakthrough paper, Reed,
Smith, and Vetta [22] proved that the Graph Bipartization problem is solv-
able in O(4k · kmn) time, where k denotes the number of vertices to be deleted
for making the graph bipartite. (Actually, it is straightforward to observe that
the exponential factor 4k can be lowered to 3k by a more careful analysis of the
algorithm [12].) Since there is a “parameter-preserving” reduction from Edge
Bipartization to Graph Bipartization [23], one can use the algorithm by
Reed et al. to directly obtain a runtime of O(3k · k3m2n) for Edge Bipartiza-
tion, k denoting the size of the set of edges to be deleted. In this work our main

2

concern is to shrink the combinatorial explosion and the polynomial complex-
ity related with the fixed-parameter tractability of Edge Bipartization. We
achieve an algorithm running in O(2k · m2) time. This shows that we can save
a cubic-time factor k3 as well as a linear-time factor n, and that we can shrink
the combinatorial explosion from 3k to 2k.

2 Preliminaries and Previous Work

This work considers undirected graphs G = (V, E) with n := |V | and m := |E|.
Given a set E′ ⊆ E of edges, V (E′) denotes the set

⋃

{u,v}∈E′{u, v} of endpoints.

We use G[X] to denote the subgraph of G induced by the vertices X ⊆ V . For
a set of edges E′ ⊆ E, we write G \ E′ for the graph (V, E \ E′). For u ∈ V ,
we use N(u) to denote the neighbor set {v ∈ V | {u, v} ∈ E}. With a side of
a bipartite graph G, we mean one of the two classes of an arbitrary but fixed
two-coloring of G.

The two problems we study are formally defined as follows:

Feedback Vertex Set (FVS)
Given an undirected graph G = (V, E) and a nonnegative integer k, find
a subset V ′ ⊆ V of vertices with |V ′| ≤ k such that each cycle in G
contains at least one vertex from V ′. (The removal of all vertices in V ′

from G therefore results in a forest.)

Edge Bipartization
Given an undirected graph G = (V, E) and a nonnegative integer k, find
a subset E′ ⊆ E of edges with |E′| ≤ k such that each odd-length cycle
in G contains at least one edge from E′. (The removal of all edges in E′

from G therefore results in a bipartite graph.)

We investigate FVS and Edge Bipartization in the context of parame-
terized complexity [7, 17] (see [8, 16] for surveys). A parameterized problem is
fixed-parameter tractable if it can be solved in f(k) · nO(1) time, where f is a
computable function solely depending on the parameter k, not on the input
size n.

To the best of our knowledge, Reed et al. [22] were the first to make the
following simple observation: To show that a minimization problem is fixed-
parameter tractable with respect to the size of the solution k, it suffices to give
a fixed-parameter algorithm which, given a size-(k + 1) solution, proves that
there is no size-k solution or constructs one. Starting with a trivial instance
and inductively applying this compression step a linear number of rounds to
larger instances, one obtains the fixed-parameter tractability of the problem.
This method is called iterative compression. The main challenge of applying it
lies in showing that there is a “fixed-parameter compression algorithm.” It is
this hard part where Reed et al. achieved a breakthrough concerning Graph
Bipartization. The compression step, however, is highly problem-specific and
no universal standard techniques are known.

3

3 Algorithm for Feedback Vertex Set

In this section we show that Feedback Vertex Set can be solved in O(ck ·m)
time for a constant c by presenting an algorithm based on iterative compression.
The following lemma provides the compression step.

Lemma 1. Given a graph G and a size-(k+1) feedback vertex set (fvs) X for G,
we can decide in O(ck ·m) time for some constant c whether there exists a size-k
fvs X ′ for G and if so provide one.

Proof. Consider the smaller fvs X ′ as a modification of the larger fvs X . The
smaller fvs retains some vertices Y ⊆ X while the other vertices S := X \ Y
are replaced with |S| − 1 new vertices from V \ X . The idea is to try by brute
force all 2|X| partitions of X into such sets Y and S. In each case, we then
have significant information about a possible smaller fvs X ′—it contains Y , but
not S—and it turns out that there is only a “small” set V ′ of candidate vertices
to draw from in order to complete Y to X ′. More precisely, we later show in
Lemma 4 that the size of V ′ is bounded by 14 · |S| and that, given S, we can
compute V ′ in O(m) time. Since |S| ≤ k + 1, |V ′| thus only depends on the
problem parameter k and not on the input size. We again use brute force and
consider each of the at most

(14·|S|
|S|−1

)

possible choices of vertices from V ′ that

can be added to Y to form X ′. The test whether a choice of vertices from V ′

together with Y forms an fvs can be easily done in O(m) time. We can now
bound the overall runtime T , where the index i corresponds to a partition of X
into Y and S with |Y | = i and |S| = |X | − i:

T = O

(

k
∑

i=0

(

|X |

i

)

·

(

O(m) +

(

14 · (|X | − i)

|X | − i − 1

)

· O(m)

)

)

.

With Stirling’s inequality, we arrive at the lemma’s claim with c ≈ 37.7.2 ut

Theorem 2. Feedback Vertex Set can be solved in O(ck · mn) time for a
constant c.

Proof. Given as input a graph G with vertex set {v1, . . . , vn}, we can apply
iterative compression to solve Feedback Vertex Set for G by iteratively
considering the subgraphs Gi := G[{v1, . . . , vi}]. For i = 1, the optimal fvs is
empty. For i > 1, assume that an optimal fvs Xi for Gi is known. Obviously,
Xi ∪ {vi+1} is an fvs for Gi+1. Using Lemma 1, we can in O(ck ·m) time either
determine that Xi ∪ {vi+1} is an optimal fvs for Gi+1, or, if not, compute an
optimal fvs for Gi+1. For i = n, we thus have computed an optimal fvs for G in
O(ck · mn) time. ut

2 The value of c can be significantly improved by a more careful analysis in Lemma 4.
Indeed, Dehne et al. [5] achieve c ≈ 10.6.

4

Theorem 2 shows that FVS is fixed-parameter tractable with the combina-
torial explosion bounded from above by ck for some constant c. Next, we show
that FVS is also linear-time fixed-parameter tractable (with the combinatorial
explosion bounded by ck for a larger constant c). The result of Fiorini et al. [10],
accepting a much worse combinatorial explosion compared to [22], is to show the
analogous result for Graph Bipartization restricted to planar graphs.

Theorem 3. Feedback Vertex Set can be solved in O(ck · m) time for a
constant c.

Proof. We first calculate in O(m) time a factor-4 approximation as described by
Bar-Yehuda et al. [2]. This gives us the precondition for Lemma 1 with |X | = 4k
instead of |X | = k + 1. Now, we can employ the same techniques as in the proof
of Lemma 1 to obtain the desired runtime: we examine 24k partitions S ∪̇ Y
of X , and—by applying the arguments from Lemma 4—for each there is some
constant c′ such that the number of candidate vertices is bounded from above
by c′ · |S|. In summary, there is some constant c such that the runtime of the
compression step is bounded from above by O(ck ·m). Since one of the 24k par-
titions must lead to the optimal solution of size k, we need only one compression
step to obtain an optimal solution, which proves the claimed runtime bound. ut

Note that any improvement of the approximation factor of a linear-time
approximation algorithm for Feedback Vertex Set below 4 will immediately
improve the runtime of the exact algorithm described in Theorem 3.

It remains to show the size bound of the “candidate vertices set” V ′ for fixed
partition Y and S of a size-(k+1) fvs X . To this end, we make use of two simple
data reduction rules.

Lemma 4. Given a graph G = (V, E), a size-(k+1) fvs X for G, and a partition
of X into two sets Y and S. Let X ′ denote a size-k fvs for G with X ′ ∩ X = Y
and X ′ ∩ S = ∅. In O(m) time, we can either decide that no such X ′ exists or
compute a subset V ′ of V \ X with |V ′| < 14 · |S| such that there exists an X ′

as desired consisting of |S| − 1 vertices from V ′ and all vertices from Y .

Proof. The idea of the proof is to use a well-known data reduction technique
for FVS to get rid of degree-1 and degree-2 vertices and to show that if the
resulting instance is too large as compared to the part S (whose vertices we are
not allowed to add to X ′), then there exists no set X ′ as desired.

First, check that S does not induce a cycle; otherwise, no X ′ with X ′ ∩ S = ∅
can be an fvs for G. Then, remove in G all vertices from Y as they are determined
to be in X ′. Finally, apply a standard data reduction to the vertices in V \X (the
vertices in S remain unmodified): remove degree-1 vertices and successively by-
pass any degree-2 vertex by a new edge between its neighbors (thereby removing
the bypassed degree-2 vertex). There are two exceptions to note: One exception
is that we do not bypass a degree-2 vertex which has two neighbors in S. The
other exception is the way to deal with parallel edges. If we create two parallel
edges between two vertices during the data reduction process—these two edges

5

A

B

C

S

Fig. 1. Partition of the vertices in V
′ into three disjoint subsets A, B, and C.

form a length-two cycle—, then exactly one of the two endpoints of these edges
has to be in S since S is an fvs of G[V \Y] and G[S] contains no cycle. Thus, we
have to delete the other endpoint and add it to X ′ since we are not allowed to
add vertices from S to X ′. Given an appropriate graph data structure, all of the
above steps can be accomplished in O(m) time. Proofs for the correctness and
the time bound of the data reduction technique are basically straightforward
and omitted here.

In the following we use G′ = (V ′∪S, E′) with V ′ ⊆ V \X to denote the graph
resulting after exhaustive application of the data reduction described above; note
that none of the vertices in S have been removed during the data reduction
process. In order to prove that |V ′| < 14 · |S|, we partition V ′ into three subsets,
each of which will have a provable size bound linearly depending on |S| (the
partition is illustrated in Fig. 1):

A := {v ∈ V ′ | |N(v) ∩ S| ≥ 2},

B := {v ∈ V ′ \ A | |N(v) ∩ V ′| ≥ 3},

C := V ′ \ (A ∪ B).

To bound the number of vertices in A, consider the bipartite subgraph
GA = (A ∪ S, EA) of G′ = (V ′ ∪ S, E′) with EA := (A × S) ∩ E′. Observe
that if there are more than |S| − 1 vertices in A, then there is a cycle in GA:
If GA is acyclic, then GA is a forest, and, thus, |EA| ≤ |S| + |A| − 1. Moreover,
since each vertex in A has at least two incident edges in GA, |EA| ≥ 2|A|, which
implies that |A| ≤ |S|−1 if GA is acyclic. It follows directly that if |A| ≥ 2|S|, it
is impossible to delete at most |S| vertices from A such that G′[A∪S] is acyclic.

To bound the number of vertices in B, observe that G′[V ′] is a forest. Fur-
thermore, all leaves of the trees in G′[V ′] are from A since G′ is reduced with
respect to the above data reduction rules. By the definition of B, each vertex
in B has at least three vertices in V ′ as neighbors. Thus, there cannot be more
vertices in B than in A, and therefore |B| < 2|S|.

Finally, consider the vertices in C. By the definitions of A and B, and since G
is reduced, each vertex in C has degree two in G′[V ′] and exactly one neighbor
in S. Hence, graph G′[C] is a forest consisting of paths and isolated vertices. We
now separately bound the number of isolated vertices and those participating in
paths.

Each of the isolated vertices in G′[C] connects two vertices from A ∪ B
in G′[V ′]. Since G′[V ′] is acyclic, the number of isolated vertices in G′[C] cannot

6

exceed |A ∪ B| − 1 < 4|S|. The total number of vertices participating in paths
in G′[C] can be bounded as follows: Consider the subgraph G′[C ∪S]. Each edge
in G′[C] creates a path between two vertices in S, that is, if |E(G′[C])| ≥ |S|,
then there exists a cycle in G′[C ∪ S]. By an analogous argument to the one
that bounded the size of A (and considering that removing a vertex from G′[C]
destroys at most two edges), the total number of edges in G′[C] may thus not
exceed |S| + 2|S|, bounding the total number of vertices participating in paths
in G′[C] by 6|S|.

Altogether, |V ′| = |A| + |B| + |C| < 2|S| + 2|S| + (4|S| + 6|S|) = 14|S|. ut

4 Algorithm for Edge Bipartization

In this section we present a new algorithm for Edge Bipartization which is
based on iterative compression and runs in O(2k · m2) time. The algorithm is
structurally similar to the O(4k·kmn) time algorithm for Graph Bipartization
given by Reed et al. [22]: Their compression routine starts by enumerating all
partitions of the known solution into two parts, one containing vertices to keep
in the solution and one containing the vertices to exchange. This is followed
by a second step that tries to find a compressed bipartization set under this
constraint. Our algorithm for Edge Bipartization does not need the first step
by enforcing that the smaller solution is disjoint from the known one, thereby
gaining a factor of O(2k) in the runtime.

We note that a similar runtime of O(2k · |G|O(1)) for Edge Bipartization
can be achieved by first reducing the input instance to Graph Bipartiza-
tion [23], and exploiting a solution disjointness property analogously to the
presented algorithm. This, however, involves several nontrivial modifications to
the algorithm of Reed et al., whereas we give a self-contained presentation here.
Moreover, our proof reveals details about the structure of Edge Bipartization
that might be of independent interest.

The following lemma provides some central insight into the structure of a
minimal edge bipartization set. (Note that in this section, we always use the
notion of paths in which every vertex is allowed to occur at most once.)

Lemma 5. Given a graph G = (V, E) with a minimal edge bipartization set X
for G, the following two properties hold:

1. For every odd-length cycle C in G, |E(C) ∩ X | is odd.
2. For every even-length cycle C in G, |E(C) ∩ X | is even.

Proof. For each edge e = {u, v} ∈ X , note that u and v are on the same side of
the bipartite graph G \ X , since otherwise we do not need e to be in X and X
would not be minimal. Consider a cycle C in G. The edges in E(C) \ X are all
between the two sides of G\X , while the edges in E(C)∩X are between vertices
of the same side as argued above. In order for C to be a cycle, however, this
implies that |E(C) \ X | is even. Since |E(C)| = |E(C) \ X | + |E(C) ∩ X |, we
conclude that |E(C)| and |E(C) ∩ X | have the same parity. ut

7

e

g

f

G :

ue

ve

uf

vf

vg

ug

G̃ :

Fig. 2. Left: Graph G with a minimal edge bipartization marked by dashed lines.
Right: Edge-extension graph G̃ of G with the corresponding edge bipartization X̃

marked by dashed lines. The mapping Φ which maps Φ(ue) = Φ(uf) = Φ(ug) = A, and
Φ(ve) = Φ(vf) = Φ(vg) = B is a valid 2-partition of V (X̃). Note that when choosing
this valid 2-partition Φ, then the dotted edges are an edge cut between the A-vertices
and the B-vertices in G̃ \ X̃. Therefore, the dotted edges are an edge bipartization for
the graph on the left (Lemma 7).

When subdividing all edges in a graph G that are contained in an edge bipar-
tization set X for G by two vertices, we can assume without loss of generality
that an edge bipartization set smaller than X is disjoint from X . This input
transformation is formalized in the following definition.

Definition 6. For a graph G = (V, E) with minimal edge bipartization X, let
the corresponding edge-extension graph G̃ := (Ṽ , Ẽ) be given by

Ṽ := V ∪ {ue, ve | e ∈ X} and

Ẽ := (E \ X) ∪ {{u, ue}, {ue, ve}, {ve, v} | e = {u, v} ∈ X}.

Let X̃ := {{ue, ve} | e ∈ X}. A mapping Φ : V (X̃) → {A, B} is called valid
2-partition of V (X̃) if for each {ue, ve} ∈ X̃, either Φ(ue) = A and Φ(ve) = B
or Φ(ue) = B and Φ(ve) = A.

An illustration of edge-extension graphs is given in Fig. 2. It is easy to see
that G̃ has an edge bipartization with k edges if and only if G has an edge
bipartization with k edges. Observe that, hence, the set X̃ as defined above
constitutes a minimal edge bipartization for G̃.

Lemma 7. Consider an edge-extension graph G = (V, E) and a minimal edge
bipartization X for G. For a set of edges Y ⊆ E with X ∩ Y = ∅, the following
are equivalent:

(1) Y is an edge bipartization for G.
(2) There is a valid 2-partition Φ of V (X) such that Y is an edge cut between

AΦ := Φ−1(A) and BΦ := Φ−1(B) in G \ X (see Fig. 2).

Proof. (2) ⇒ (1): Consider any odd-length cycle C in G. We show that E(C)∩
Y 6= ∅. Let s := |E(C) ∩ X |. By Property 1 in Lemma 5, s is odd. Without loss
of generality, we assume that E(C) ∩ X = {{u0, v0}, {u1, v1}, . . . , {us−1, vs−1}}
with vertices vi and u(i+1) mod s being connected by a path in C \ X . Since Φ is
a valid 2-partition, we have Φ(ui) 6= Φ(vi) for all 0 ≤ i < s. With s being odd,

8

this implies that there is a pair vi, u(i+1) mod s such that Φ(vi) 6= Φ(u(i+1) mod s).
Since the removal of Y destroys all paths in G \ X between AΦ and BΦ, we
obtain that E(C) ∩ Y 6= ∅.

(1) ⇒ (2): Let CX : V → {A, B} be a two-coloring of the bipartite graph G \X
and CY : V → {A, B} a two-coloring of the bipartite graph G \ Y . Define

Φ : V → {A, B}, v 7→

{

A if CX(v) = CY (v)

B otherwise.

We show that Φ|V (X) (that is, Φ with domain restricted to V (X)) is a valid
2-partition with the desired property.

First we show that Φ|V (X) is a valid 2-partition. Consider an edge {u, v} ∈ X.
There must be at least one even path in G \ X from u to v, or {u, v} would be
redundant; therefore CX(u) = CX(v). In G\Y , the vertices u and v are connected
by an edge, and therefore CY (u) 6= CY (v). It follows that Φ(u) 6= Φ(v).

Since both CX and CY change in value when going from a vertex to its
neighbor in G\(X∪Y), the value of Φ is constant along any path in G\(X∪Y).
Therefore, there can be no path from any u ∈ AΦ to any v ∈ BΦ in G \ (X ∪Y),
that is, Y is an edge cut between AΦ and BΦ in G \ X . ut

Theorem 8. Edge Bipartization can be solved in O(2k · m2) time.

Proof. Through Lemma 7 we obtain the compression step that, from a given min-
imal edge bipartization X , computes a smaller edge bipartization Y in O(2k ·km)
time or proves that no such Y exists: We enumerate all 2k valid 2-partitions Φ
of V (X) and determine a minimum edge cut between AΦ and BΦ until we find
an edge cut Y of size k − 1 (see Fig. 2). Note that the condition of Lemma 7
that Y ∩X = ∅ does not restrict generality: Since G is an edge extension graph
(Definition 6), we can replace each edge in Y ∩X by one of its two adjacent edges
in G. Each of the minimum cut problems can individually be solved in O(km)
time with the Ford-Fulkerson method that finds and augments a flow augment-
ing path k times. By Lemma 7, Y is an edge bipartization; furthermore, if no
such Y is found, we know that |X | is minimum.

Given as input a graph G with edge set {e1, . . . , em}, we can apply itera-
tive compression to solve Edge Bipartization for G by iteratively considering
the graphs Gi containing edges {e1, . . . , ei}, for i = 1, . . . , m. For i = 1, the
optimal edge bipartization is empty. For i > 1, assume that an optimal edge
bipartization Xi−1 with |Xi−1| ≤ k for Gi−1 is known. If Xi−1 is not an edge
bipartization for Gi, then we consider the set Xi−1 ∪ {ei}, which obviously is a
minimal edge bipartization for Gi. Using Lemma 7, we can in O(2k′

· k′i) time
(where k′ := |Xi−1∪{ei}| ≤ k+1) either determine that Xi−1∪{ei} is an optimal
edge bipartization for Gi or, if not, compute an optimal edge bipartization Xi

for Gi. This process can be stopped if |Xi| > k.
Summing over all iterations, we have an algorithm that computes an optimal

edge bipartization for G in O(
∑m

i=1 2k · ki) = O(2k · km2) time.

9

With the same technique used by Hüffner [12] to improve the runtime of the
iterative compression algorithm for Graph Bipartization, the runtime here
can also be improved to O(2k ·m2). For this, one uses a Gray code to enumerate
the valid 2-partitions in such a way that consecutive 2-partitions differ in only
one element. For each of these (but the first one), one can then solve the flow
problem by a constant number of augmentation operations on the previous flow
network in O(m) time. ut

5 Conclusion

We present significantly improved results on the fixed-parameter tractability of
Feedback Vertex Set and Edge Bipartization. To our belief, the iterative
compression strategy due to Reed et al. employed in this work will become an
important tool in the design of efficient fixed-parameter algorithms.

We succeeded in proving that FVS is even solvable in linear time for con-
stant parameter value k. Employing a completely different technique, a similar
result could very recently be shown for Graph Bipartization restricted to pla-
nar graphs (where the problem remains NP-complete) [10]. For general Graph
Bipartization as well as for Edge Bipartization, this remains open.

Finally, it remains a long-standing open problem whether Feedback Ver-
tex Set on directed graphs is fixed-parameter tractable. The answer to this
question would mean a significant breakthrough in the field.

Acknowledgement. The authors would like to thank the anonymous referees of
WADS 2005 for helpful and inspiring comments.

References

1. V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undi-
rected feedback vertex set problem. SIAM Journal on Discrete Mathematics,
3(2):289–297, 1999.

2. R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth. Approximation algorithms
for the feedback vertex set problem with applications to constraint satisfaction and
Bayesian inference. SIAM Journal on Computing, 27(4):942–959, 1998.

3. A. Becker, R. Bar-Yehuda, and D. Geiger. Randomized algorithms for the Loop
Cutset problem. Journal of Artificial Intelligence Research, 12:219–234, 2000.

4. H. L. Bodlaender. On disjoint cycles. International Journal of Foundations of

Computer Science, 5:59–68, 1994.
5. F. Dehne, M. Fellows, M. Langston, F. Rosamond, and K. Stevens. An O∗(2O(k))

FPT algorithm for the undirected feedback vertex set problem. In Proc. 11th

COCOON, LNCS. Springer, Aug. 2005.
6. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness.

Congressus Numerantium, 87:161–187, 1992.
7. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
8. M. R. Fellows. New directions and new challenges in algorithm design and com-

plexity, parameterized. In Proc. 8th WADS, volume 2748 of LNCS, pages 505–520.
Springer, 2003.

10

9. P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedback set problems. In D. Z.
Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization, Vol. A,
pages 209–258. Kluwer, 1999.

10. S. Fiorini, N. Hardy, B. Reed, and A. Vetta. Planar graph bipartization in linear
time. In Proc. 2nd GRACO, Electronic Notes in Discrete Mathematics, 2005.

11. N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-
(multi)cut theorems and their applications. SIAM Journal on Computing,
25(2):235–251, 1996.

12. F. Hüffner. Algorithm engineering for optimal graph bipartization. In Proc. 4th

WEA, volume 3503 of LNCS, pages 240–252. Springer, 2005.
13. A. B. Kahng, S. Vaya, and A. Zelikovsky. New graph bipartizations for double-

exposure, bright field alternating phase-shift mask layout. In Proc. Asia and South

Pacific Design Automation Conference, pages 133–138, 2001.
14. I. Kanj, M. Pelsmajer, and M. Schaefer. Parameterized algorithms for feedback

vertex set. In Proc. 1st IWPEC, volume 3162 of LNCS, pages 235–247. Springer,
2004.

15. C. Lund and M. Yannakakis. The approximation of maximum subgraph problems.
In Proc. 20th ICALP, volume 700 of LNCS, pages 40–51. Springer, 1993.

16. R. Niedermeier. Ubiquitous parameterization—invitation to fixed-parameter al-
gorithms. In Proc. 29th MFCS, volume 3153 of LNCS, pages 84–103. Springer,
2004.

17. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, forthcoming, 2005.

18. C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and com-
plexity classes. Journal of Computer and System Sciences, 43:425–440, 1991.

19. M. Pop, D. S. Kosack, and S. L. Salzberg. Hierarchical scaffolding with Bambus.
Genome Research, 14:149–159, 2004.

20. V. Raman, S. Saurabh, and C. R. Subramanian. Faster fixed parameter tractable
algorithms for undirected feedback vertex set. In Proc. 13th ISAAC, volume 2518
of LNCS, pages 241–248. Springer, 2002.

21. V. Raman, S. Saurabh, and C. R. Subramanian. Faster algorithms for feedback
vertex set. In Proc. 2nd GRACO, Electronic Notes in Discrete Mathematics, 2005.

22. B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations

Research Letters, 32:299–301, 2004.
23. S. Wernicke. On the algorithmic tractability of single nucleotide polymorphism

(SNP) analysis and related problems. Diplomarbeit, WSI für Informatik, Univer-
sität Tübingen, 2003.

11

