
Exploiting bounded signal flow for graph

orientation based on cause–effect pairs∗

Britta Dorn† Falk Hüffner‡ Dominikus Krüger§

Rolf Niedermeier‡ Johannes Uhlmann‡

Abstract

Background: We consider the following problem: Given an undirected
network and a set of sender–receiver pairs, direct all edges such that the
maximum number of “signal flows” defined by the pairs can be routed
respecting edge directions. This problem has applications in understanding
protein interaction based cell regulation mechanisms. Since this problem is
NP-hard, research so far concentrated on polynomial-time approximation
algorithms and tractable special cases.
Results: We take the viewpoint of parameterized algorithmics and exam-
ine several parameters related to the maximum signal flow over vertices
or edges. We provide several fixed-parameter tractability results, and in
one case a sharp complexity dichotomy between a linear-time solvable case
and a slightly more general NP-hard case. We examine the value of these
parameters for several real-world network instances.
Conclusions: Several biologically relevant special cases of the NP-hard
problem can be solved to optimality. In this way, parameterized analysis
yields both deeper insight into the computational complexity and practical
solving strategies.

Background

Current technologies [24] like two-hybrid screening can find protein interactions,
leading to protein–protein interaction (PPI) networks, but cannot decide the
direction of the interaction. This can be complemented by gene knock-out exper-
iments which constitute a way to determine causal relations in these networks,

∗A preliminary version of this work appeared in the proceedings of the 1st International
ICST Conference on Theory and Practice of Algorithms in (Computer) Systems (TAPAS ’11),
volume 6595 in Lecture Notes in Computer Science, pages 104–115, Springer 2011.
†Fakultät für Mathematik und Wirtschaftswissenschaften, Universität Ulm, Germany.

Email: britta.dorn@uni-ulm.de.
‡Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany. Email:

{falk.hueffner,rolf.niedermeier}@tu-berlin.de, johannes.uhlmann@campus.tu-berlin.de.
§Institut für Theoretische Informatik, Universität Ulm, Germany. Email:

dominikus.krueger@uni-ulm.de.

1

thus providing additional information on possible directions of information flow
in them [26]. Given a list of so-called cause-effect pairs, the challenge consists in
deducing an orientation of the PPI network which takes into account the causal
relations of as many of these pairs as possible. Medvedovsky et al. [14] formalize
this in terms of a graph theoretical problem as follows.

Problem Formalization. Let G = (V,E) be an undirected graph. An ori-

entation ~G of G is a directed graph ~G = (V, ~E) obtained from G by replacing

every undirected edge {u, v} ∈ E by a directed one, i. e., either by (u, v) ∈ ~E or

by (v, u) ∈ ~E. Let P ⊆ V × V be a set of ordered source–target pairs, which we
sometimes refer to as “signals”. In order to distinguish pairs from edges or arcs,
we use the notation [a, b] ∈ P to denote the pair starting in a and ending in b.

We say that a pair [a, b] ∈ P is satisfied by a given orientation ~G if there exists

a directed path from a to b in ~G. The central problem considered in this work is
to find an orientation of a given graph maximizing the number of satisfied pairs.
As pointed out by Medvedovsky et al. [14], we can assume that the given graph
is a tree: it is clearly optimal to orient the edges of a cycle to form a directed
cycle, and hence one can repeatedly contract a cycle to a single vertex, obtaining
a tree. Note that this process will always produce the same tree independent
of the order of contractions, since two vertices will be merged eventually if and
only if they are in the same bridge block, where a bridge block is a connected
component of the graph that is obtained by deleting all bridges (edges whose
deletion increases the number of connected components). Further, bridge blocks
can be found in linear time [13, 22]. Thus, formalized as a decision problem,
Maximum Tree Orientation is defined as follows.

Maximum Tree Orientation (MTO)
Input: An undirected tree T , a set P of ordered pairs of vertices
of T , and an integer k ≥ 0.
Question: Is there an orientation of T such that at most k pairs
in P are not satisfied?

We also consider the weighted version, called Weighted Maximum Tree
Orientation (W-MTO), where every pair [a, b] ∈ P is associated with a
rational weight ω([a, b]) ≥ 0, and the goal is to maximize the sum of weights of
the satisfied pairs. Throughout this work, n denotes the number of vertices in
the given MTO instance, if not stated otherwise.

As sketched before, MTO is motivated from the inference of causal relations
in biological networks [1, 19] such as PPI networks, but it also has applications
in the context of communication networks, where several one-way connection
request pairs are given. Since each link between two network nodes can only be
used in one direction, one has to orient the links in such a way that as many
communication requests as possible can be fulfilled.

Previous Work. MTO was introduced by Medvedovsky et al. [14]; they
showed that the problem is NP-complete even when the underlying tree is

2

a star (that is, a diameter-two tree) or a tree with maximum vertex degree
three. Moreover, they provided a cubic-time algorithm for MTO restricted
to paths. Seeing MTO as the task to maximize the number of satisfied pairs,
Medvedovsky et al. also provided polynomial-time approximation algorithms
with approximation factor 1/4 in the case of stars and O(1/ log n) in the case of
general n-vertex trees. The latter approximation factor was recently improved
to O(log log n/ log n) by Gamzu et al. [8], who furthermore extended the studies
of MTO to “mixed graphs” where some of the edges are already oriented based
on causal relations known in advance. Besides these theoretical investigations,
Medvedovsky et al. [14] also provided some experimental results based on a yeast
PPI network and some synthetic data. Silverbush et al. [20] recently formulated
a polynomial-size integer linear program for the generalization of mixed graphs
and did some experiments with it. Also recently, Gitter et al. [9] considered graph
orientation with the objective of maximizing the weight of all satisfied paths
between sources and targets with length at most some constant k. They used
approximation algorithms to discover pathways in biological networks. In an
earlier work, Hakimi et al. [11] studied the special case of MTO where the list of
pairs to be satisfied contains all possible pairs; they developed a quadratic-time
algorithm for this case.

Our Contributions. We mainly continue and complement previous work on
MTO [8,14] by starting a parameterized and multivariate complexity analysis of
MTO. That is, we try to better understand the border between tractable and
intractable cases of MTO while sticking to optimal (instead of approximate)
solutions. In particular, our focus is on the “amount of signal flow” over vertices
and edges, respectively, and how this influences the computational complexity of
MTO.

• We show that W-MTO can be solved in O(2mv · |P | + n4) time on an
n-vertex tree, where mv denotes the maximum number of connecting paths
(one-to-one corresponding to the input vertex pairs) over any tree vertex.
In other words, W-MTO is fixed-parameter tractable with respect to the
parameter mv.

• We introduce the concept of cross pairs and show that cross-pair-free
instances of W-MTO can be solved in quadratic time, as a corollary also
improving the cubic-time algorithm of Medvedovsky et al. [14] for MTO
on paths to quadratic time.

• We additionally show that W-MTO is fixed-parameter tractable with
respect to the parameter qv which is the maximum number of cross pairs
over any vertex; namely, it can be solved in O(2qv · n2 · qv) time.

• Shifting the focus from “maximum vertex signal flow” to “maximum edge
signal flow”, we show a sharp complexity dichotomy: W-MTO can be
solved in linear time if no tree edge has to carry more than two signals, but
if this maximum edge signal flow is three, MTO already becomes NP-hard.

3

• Finally, we briefly discuss some practical aspects of exactly solving the
so far very few considered real-world instances and conclude that these
can be already solved to optimality within milliseconds (via at least three
different strategies). However, we also make the point that with the future
availability of further real-world data, our new algorithms could be of
significant practical relevance beyond so far known or straightforward
approaches.

Preliminaries, Basic Facts, and Simple Observations. For ease of pre-
sentation, for a W-MTO instance (T, P, ω), we always assume that ω([s, t]) = 0
for all pairs s, t ∈ V with [s, t] 6∈ P . Moreover, subsequently mostly referring to
MTO, the presented concepts and definitions clearly apply to W-MTO as well.
Note that in a tree T = (V,E), for each ordered pair [a, b] of vertices, there exists
a uniquely determined path connecting these vertices. We will therefore often
write the path defined by the pair [a, b] when we refer to the unique path in the
tree starting in vertex a and ending in vertex b, or talk about pairs and paths
interchangeably. Sometimes, we also talk about paths in the tree which do not nec-
essarily correspond to pairs. We denote the undirected path connecting vertices v
and w in T by pathT (v, w). Moreover, Pv := {[s, t] ∈ P | v ∈ V (pathT (s, t))}
denotes the set of paths passing through a vertex v (note that this includes paths
of which v is an endpoint). An MTO instance is called rooted if the underlying
tree T is rooted. In a rooted tree T = (V,E), if vertex a ∈ V is an ancestor of
vertex b ∈ V , then we use the notation a ≺ b. The subtree of T rooted at v ∈ V
is denoted Tv.

Let (T = (V,E), P) be an MTO instance, and let x, y ∈ P be two pairs.
We say that x conflicts with y if there exists no orientation of T for which
both x and y are satisfied. From an n-vertex MTO instance, we build a so called
conflict graph in which each vertex corresponds to an input pair of the MTO
instance, and where there is an edge between two pairs if and only if they conflict
with each other. More formally, given an MTO instance (T = (V,E), P), the
corresponding conflict graph Gc(T, P) is defined as Gc(T, P) := (P,Ec) where
Ec := {{u, v} | u, v ∈ P ∧ u conflicts with v}.

The computation of the conflict graph can be done in Θ(n4) time. It clearly
cannot be done faster, because up to O(n4) conflicts are possible. To achieve the
desired bound, we thus need to decide in constant time whether two pairs conflict
with each other. This is done using an appropriate data structure and two simple
observations: First, in a rooted tree, least common ancestors (LCAs) can be
calculated in constant time after some linear time preprocessing [12]. Second,
two pairs are in conflict if and only if their paths run in different directions
through an edge incident on the lower one of the two LCAs of the two pairs.

Clearly, for an orientation of (T, P), in Gc there are no edges (that is, conflicts)
between the vertices corresponding to the satisfied source–target pairs, and hence
the vertices corresponding to the non-satisfied source–target pairs form a vertex
cover for Gc, that is, a vertex set V ′ ⊆ P such that for every edge e ∈ Ec at
least one endpoint of e is in V ′. This yields the following useful observation.

4

Proposition 1. Finding a minimum-weight vertex cover in the conflict graph
Gc(T, P) one-to-one corresponds to determining a minimum-weight set of pairs
that cannot be satisfied in (T, P).

It is generally assumed that the fact that a problem is NP-hard implies
that there is no algorithm that finds an optimal solution and has running time
bounded by a polynomial of the size of the input. Parameterized complexity is a
two-dimensional framework for the analysis of computational complexity [5,7,15].
One dimension is the input size n, and the other one is the parameter (usually
a positive integer). A problem is called fixed-parameter tractable (fpt) with
respect to a parameter x if it can be solved in f(x) · nO(1) time, where f is
a computable function only depending on x. If a problem is fixed-parameter
tractable with respect to x, we can hope for efficient optimal solutions as long
as the parameter is not too large. Due to Proposition 1 we can immediately
conclude that MTO and W-MTO are fixed-parameter tractable with respect
to the parameter “number of pairs” p, since the conflict graph has p vertices
and we can find a minimum-weight vertex cover by trying all possibilities in
2p · nO(1) time. Further, since minimum-weight vertex covers can be found in
O(1.379k + kn) time [17], we have fixed-parameter tractability with respect to
the parameter “number of unsatisfied pairs”, and if all weights are at least one,
also with respect to the parameter “total weight of unsatisfied pairs”.

Tree-decomposition-based algorithms have been successfully applied in the
area of computational biology, for instance, in the context of structure–sequence
alignment [21]. Informally speaking, the treewidth [15] measures the “tree-
likeness” of a graph, and a tree decomposition is the “embedding” of a graph
into a tree depicting the tree-like structure of the graph.

We recall the following definitions from literature [3]: A tree decomposition
of a graph G = (V,E) is a pair 〈{Xi | i ∈ I}, T 〉, where each Xi is a subset
of V called bag, and T = (I, F) is a tree with node set I and edge set F . The
following must hold:

1.
⋃

i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi; and

3. for all i, j, l ∈ I, if j lies on the path between i and l in T , then Xi∩Xl ⊆ Xj .

The width of 〈{Xi | i ∈ I}, T 〉 is max{|Xi| | i ∈ I} − 1. The treewidth of G is
the minimum width over all tree decompositions of G.

Methods and Results

Bounded Signal Flow Over Vertices

In this subsection, we investigate how the vertex-wise structure of the source–
target pairs influences the computational complexity of Maximum Tree Ori-
entation. More specifically, first we consider the parameter mv denoting the

5

maximum number of source–target paths passing through a vertex. We show
that MTO can be solved in O(2mv · |P | + n4) time. In other words, MTO is
fixed-parameter tractable with respect to the parameter mv. Motivated by this
positive result, we explore in more depth the structure of the source–target paths
that pass through a vertex. To this end, we introduce the concept of “cross
pairs” and show that for cross-pair-free instances MTO can be solved in O(n2)
time. Informally speaking, an instance is cross-pair-free if the input tree can
be rooted such that for each source–target pair one endpoint is an ancestor of
the other one. Then, for a rooted MTO instance a cross pair is a source–target
pair such that none of its endpoints is the ancestor of the other endpoint. By
refining the solving strategy for cross-pair-free instances, we show that Maximum
Tree Orientation can be solved in O(2qv · n2 · qv) time, where qv denotes the
maximum number of cross pairs passing through a vertex.

All algorithms in this subsection are based on dynamic programming, and,
hence, since source–target pair weights can easily be incorporated, extend to
W-MTO.

Parameter “Maximum Number of Pairs Per Vertex”

Here, we show that W-MTO is fixed-parameter tractable for the parameter mv

denoting the maximum number of source–target pairs passing through a vertex.
To this end, we prove in Theorem 1 that we can construct in polynomial time a
tree decomposition of the conflict graph of treewidth at most mv. Recall that
(weighted) MTO is equivalent to (weighted) Vertex Cover on the conflict graph
(see Proposition 1). Thus, the running time follows by the fact that (weighted)
Vertex Cover can be solved in O(2twn) time, given a tree decomposition of
width tw [15].

Theorem 1. On n-vertex trees, Weighted Maximum Tree Orientation is
solvable in O(2mv · |P |+ n4) time, where mv denotes the maximum number of
source–target pairs passing through a vertex.

Proof. First, we show how to construct a tree decomposition of width mv of the
conflict graph in polynomial time. Let (T = (V,E), P) denote an MTO instance
and let Gc = (P,Ec) denote the associated conflict graph. The basic idea is that
we can use T as the underlying tree of a tree decomposition of Gc = (P,Ec). More
specifically, the tree decomposition is given by 〈{Pv | v ∈ V }, T 〉 for all v ∈ V .
Recall that Pv denotes the set of source–target pairs passing through v. Observe
that each vertex p ∈ P of the conflict graph appears exactly in the bags Xv for
all v ∈ V (pathT (p)). Moreover, note that if two source–target pairs p = [s, t]
and p′ = [s′, t′] are in conflict (and hence are adjacent in the conflict graph),
then pathT (s, t) and pathT (s′, t′) have at least one edge and thus at least two
vertices in common. Hence, every edge of the conflict graph is contained in at
least one of the Xv’s. Thus, all conditions of a tree decomposition are fulfilled.
Moreover, the width of this tree decomposition is clearly mv − 1. The conflict
graph, the sets Pv, and the tree decomposition can be computed in O(n4) time.
Thus, the overall running time follows by the fact that Weighted Vertex

6

Cover can be solved in O(2tw|P |) time, given a tree decomposition of width tw
of Gc [15].

Cross Pairs

In Theorem 1, we have shown that W-MTO is fixed-parameter tractable with
respect to the parameter mv. In the following, will strengthen this result by
showing that W-MTO is fixed-parameter tractable with respect to the parameter
“number of a special type of source–target pairs (the so-called cross pairs) passing
through a vertex”. The idea is to identify a “trivial” (that is, polynomial-time
solvable) special case of the problem and then to investigate instances that are
close to these trivial instances, their closeness measured in terms of a certain
parameter which is referred to as distance from triviality [10, 16].

In the following, we will always consider rooted trees. Informally speaking, a
cross-pair-free instance only contains source–target pairs whose corresponding
paths are directed either towards the root or towards the leaves, but do not
change their direction. Cross-pair-free instances of W-MTO are of special interest
since they constitute our “trivial instances”.

Definition 1. Let (T = (V,E), P, ω) be an instance of W-MTO where T is a
rooted tree. A source–target pair p = [a, b] ∈ P is called cross pair if neither a
is an ancestor of b nor b an ancestor of a. An instance of W-MTO is called
cross-pair-free if T can be rooted such that P does not contain any cross pairs.

Cross-pair-free Instances

Now, we devise a dynamic-programming-based algorithm solving W-MTO in
quadratic time on cross-pair-free instances.

Theorem 2. On n-vertex trees, Weighted Maximum Tree Orientation
for cross-pair-free instances with given root can be solved in O(n2) time.

Proof. Algorithm. We present a dynamic programming algorithm with
quadratic running time solving a cross-pair-free W-MTO instance (T = (V,E), P, ω)
with root r. For the presentation of the algorithm, we use the following no-
tation. For v ∈ V , let Tv be the subtree of T rooted at v. For all v, w ∈ V
with v ≺ w (that is, v is an ancestor of w) let T v

w denote the subtree of T induced
by V v

w := V (Tw) ∪ V (pathT (v, w)). For ease of presentation, let V w
w := V (Tw).

Moreover, let P v
w := {[s, t] ∈ P | s, t ∈ V v

w}. That is, T v
w is the tree consisting

of the path pathT (v, w) and the subtree Tw rooted at w, and P v
w are the pairs

with both endpoints in T v
w. Finally, the weight of an orientation ~T v

w of (T v
w, P

v
w)

is the sum of the weights of the pairs in P v
w satisfied by ~T v

w.
The algorithm maintains an n×n dynamic programming table S, containing

for each v, w ∈ V with v ≺ w or v = w the two entries S(v, w) and S(w, v). The
goal of the dynamic programming procedure is to fill S in accordance with the
following definition.

For all v, w ∈ V with v ≺ w, entry S(v, w) is the maximum weight of an
orientation of (T v

w, P
v
w) among all orientations of (T v

w, P
v
w) orienting the path

7

between v and w from v to w (that is, away from the root). Analogously, S(w, v)
is the maximum weight of an orientation of (T v

w, P
v
w) among all orientations

of (T v
w, P

v
w) orienting the path between v and w from w to v (that is, towards

the root). Note that in the case v = w we have that S(v, v) is the weight of an
optimal orientation of the subtree rooted at v.

Next, we describe how our algorithm computes the entries of S in accordance
with this definition. The weight of an optimal orientation of (T, P) can then be
found in S(r, r).

To compute the entries of S, visit all vertices w ∈ V in a bottom-up traversal.
Then, for each w consider all vertices v ∈ V with v = w or v ≺ w and set (omit
the sum if w is a leaf):

S(v, w) := A(v, w) +
∑

u is a child of w

max {S(u,w), S(v, u)−A(v, w)} , (1)

S(w, v) := A(w, v) +
∑

u is a child of w

max {S(w, u), S(u, v)−A(w, v)} . (2)

Herein, A(v, w) denotes the sum of the weights of the source–target pairs with
both endpoints on pathT (v, w) that are satisfied when orienting the path be-
tween v and w from v to w, that is,

A(v, w) := ω({[s, t] ∈ P | s, t ∈ V (pathT (v, w)) ∧ s ≺ t}). (3)

Analogously, A(w, v) := ω({[s, t] ∈ P | s, t ∈ V (pathT (v, w))∧t ≺ s}). Moreover,
for ease of presentation we assume that A(v, v) = 0.
Correctness. For the correctness of the algorithm note the following. For a
leaf w and an ancestor v of w, the tree T v

w is identical to the path pathT (v, w).
Hence, the sum of the weights of pairs that can be satisfied by orienting the
path either from v to w or from w to v is A(v, w) and A(w, v), respectively.
Next, consider the case that w is an inner vertex and let v be an ancestor of w.
Moreover, let u1, . . . , u` denote the children of w. We argue that the maximum
weight of an orientation of (T v

w, P
v
w) orienting the edges on pathT (v, w) towards w

equals

A(v, w) +
∑̀
i=1

max {S(ui, w), S(v, ui)−A(v, w)} , (4)

and, hence, S(v, w) is computed correctly. To this end, consider a maximum-

weight orientation ~T v
w of (T v

w, P
v
w) orienting the edges on pathT (v, w) towards w.

If, for a child ui, ~T v
w contains the arc (ui, w), then the contribution of the

source–target pairs in P v
w with at least one endpoint in Tui

to the weight of ~T v
w

is S(ui, w); note that no source–target pair of P v
w with exactly one endpoint

in Tw
ui

is satisfied by ~T v
w, and thus the contribution of these pairs is S(ui, w) (a

smaller contribution would contradict the optimality of ~T v
w). Moreover, if for a

child ui the oriented tree ~T v
w contains the arc (w, ui), then it follows by a similar

argument that the contribution of the paths in P v
w with at least one endpoint

in V (Tui
) is S(v, ui)−A(v, w). The only difference is that the contribution of the

8

source–target pairs with both endpoints in V (pathT (v, w)) is already considered
in the above formula, and, hence, must be subtracted from S(v, ui).
Running time. For the running time bound, we show that A can be computed
in O(n2) time in a preprocessing step. Then, the overall running time is clearly
bounded by

O

(∑
v∈V

∑
w∈V

degT (w)

)
= O

(∑
v∈V

n

)
= O(n2), (5)

since
∑

w∈V degT (w) = 2(n− 1) in trees. Clearly, for v, w ∈ V with v ≺ w the
matrix entries A(v, w) and A(w, v) can be computed by setting

A(v, w) := ω([v, w]) + A(v, y) + A(x,w)−A(x, y) (6)

and
A(w, v) := ω([w, v]) + A(w, x) + A(y, v)−A(y, x), (7)

where x is the neighbor of v and y is the neighbor of w on pathT (v, w). This
assumes, however, that all the entries of A for pairs with distance ` − 1 are
known before computing the entries of the pairs with distance `. This can be
ensured by using a queue (first-in-first-out data structure) as follows. For the
computation of A, first, for all edges {v, w} ∈ E with v ≺ w set A(v, w) :=
ω([v, w]) and A(w, v) := ω([w, v]) (let ω([s, t]) := 0 if [s, t] 6∈ P) and append the
pair (v, w) at the tail of the queue. After each edge has been processed, proceed
as follows. Until the queue is empty, let (x,w) denote the next element at the
head of the queue and let v denote the parent of x and let y denote the parent of w
in T (if x = r remove (x,w) from the head position of the queue and do nothing
else). It is easy to verify that the entries for the pairs (x,w) and (v, y) have
already been computed and, hence, can be used to compute A(v, w) and A(w, v)
as described above. Finally, we remove (x,w) from the head position of the
queue and append (v, w) at the tail of the queue. Clearly, for every pair v, w
of vertices with v ≺ w, we need a constant number of operations to compute
the two table entries A(v, w) and A(w, v), resulting in an overall running time
bound of O(n2).

Note that if the root of a cross-pair-free W-MTO instance is not known, it
can be calculated in O(n|P |) time by trying all roots and then checking for each
pair if the least common ancestor is one of the two endpoints.

As an immediate consequence of Theorem 2, we can improve the cubic-
time algorithm for MTO on paths by Medvedovsky et al. [14] to quadratic
time. Herein, we use that every path rooted at one of its endpoints results in a
cross-pair-free instance of MTO.

Corollary 1. Weighted Maximum Tree Orientation on n-vertex paths
can be solved in O(n2) time.

9

Parameter “Maximum Number of Cross Pairs Passing Through a
Vertex”

Next, we show that W-MTO is fixed-parameter tractable with respect to the
parameter qv by extending the dynamic programming algorithm for cross-pair-free
instances. Formally, qv is defined as follows. For a rooted W-MTO instance (T =
(V,E), P) with root r, let Q denote the set of cross pairs. Moreover, for v ∈ V
let Qv := Pv ∩Q be the set of cross pairs passing through v. With respect to
the root r the maximum number qv(r) of cross pairs passing through a vertex is
given by maxv∈V |Qv|. Then, qv is the minimum value of qv(r) over all possible
choices r to root T .

Theorem 3. On n-vertex trees, Weighted Maximum Tree Orientation
with given root can be solved in O(2qv · qv · n2) time, where qv denotes the
maximum number of cross pairs passing through a vertex.

Proof. The basic idea of the algorithm is to incorporate the cross pairs by trying
for every vertex all possibilities to satisfy the cross pairs passing through this
vertex. To this end, we extend the matrix S by an additional dimension. As a
consequence, the dynamic programming update step becomes significantly more
intricate.

Let (T = (V,E), P, ω) be a rooted W-MTO instance with root r. For the
presentation of the algorithm we use the same notation as in the proof of
Theorem 2. In addition, we employ the following definitions.

Let w ∈ V . A possibility to satisfy the cross pairs in Qw is represented
by a coloring cw : Qw → {0, 1}, meaning that a cross pair q ∈ Qw must be
satisfied iff cw(q) = 1. Let Cw denote the set of all 0/1-colorings of Qw. Note
that |Cw| = 2|Qw|. To incorporate the cross pairs, for every v, w ∈ V with v ≺ w
or v = w and for every coloring cw, the dynamic programming table S contains
two entries S(v, w, cw) and S(w, v, cw). Informally speaking, S(v, w, cw) denotes
the maximum weight of an orientation of T v

w under the assumption that all cross
pairs q ∈ Qv with cw(q) = 1 are “satisfiable” and the edges in pathT (v, w) are
oriented from v towards w. Entry S(w, v, cw) is defined analogously, but here
we assume that the edges in pathT (v, w) are oriented from w towards v. For a
precise description, we use the following notation.

Clearly, we are interested only in colorings cw of Qw such that any two cross
pairs q, q′ ∈ Qw with cw(q) = cw(q′) = 1 are not in conflict. We call such a
coloring locally feasible. Moreover, we extend the notion “feasible” as follows.
As informally described above, we distinguish the two cases that the edges
on pathT (v, w) are oriented

(1) from v to w (for entry S(v, w, cw)), or

(2) from w to v (for entry S(w, v, cw)).

For the case (1), a locally feasible coloring cw is called feasible if for each cross
pair [s, t] ∈ Qw with cw([s, t]) = 1 orienting the edges on pathT (v, w) from v to w
and the edges on pathT (s, t) from s to t is simultaneously possible. Analogously,

10

a locally feasible coloring cw is feasible for case (2) when orienting the edges
on pathT (s, t) from s to t does not contradict the orientation of the edges
on pathT (v, w) from w to v.

For a coloring cw of Qw, we must ensure that in the considered orientations
of (T v

w, P
v
w) all cross pairs q ∈ Qw with cw(q) = 1 are satisfiable. Therefore,

we call an orientation of (T v
w, P

v
w) consistent with a cross pair [s, t] ∈ Qw (note

that [s, t] ∈ P \ P v
w is allowed) if the common edges of T v

w and pathT (s, t) are
oriented from s to t. Finally, we call an orientation of (T v

w, P
v
w) consistent with a

coloring cw of Qw if the orientation is consistent with each cross pair q ∈ Qw

with cw(q) = 1.
With these notations, we can formally define the meaning of the entries

of S. For every two vertices v, w ∈ V with v ≺ w or v = w and for every
0/1-coloring cw ∈ Qw the entry S(v, w, cw) is −∞ if the coloring cw is not
feasible for case (1). Otherwise, S(v, w, cw) denotes the maximum weight of an
orientation of (T v

w, P
v
w) among all orientations of (T v

w, P
v
w) fulfilling the following

constraints:

• the edges on pathT (v, w) are oriented from v to w, and

• the orientation is consistent with cw.

This definition ensures that the orientation is not conflicting with the real-
ization implied by the coloring cw and the fixed orientation of pathT (v, w).
The entry S(w, v, cw) is defined analogously with the difference that here we
assume that the edges on pathT (v, w) are oriented from w to v. Note that
the cross pairs having only one endpoint in T v

w are not contained in P v
w, and

hence do not contribute to the weight of an orientation of (T v
w, P

v
w). Observe

that maxcr∈Cr S(r, r, cr) is the maximum weight of an orientation of the whole
instance (T, P, ω) since T r

r = T and we build the maximum over all colorings of
the cross pairs in Qr.

Next, we provide a strategy to compute the entries of S in accordance with
this definition. In the update step, we need to adjust the tables of a vertex w
with the tables of its children. Doing so, we have to ensure that we only consider
colorings that are not contradictory to each other. Let cu denote a coloring
of Qu and cw denote a coloring of Qw. We use cu|cw to denote that cu and cw
agree in the coloring of the cross pairs in Qu ∩Qw, that is, for all q ∈ Qu ∩Qw

it holds that cu(q) = cw(q). Finally, let WLCA(w, cw) denote the sum of the
weights of the cross pairs [s, t] ∈ Qw with cw([s, t]) = 1 that have w as their least
common ancestor.

For the computation of S, visit each vertex w ∈ V in a post-order traversal
of T . For each w consider all vertices v ∈ V with v ≺ w or v = w. Moreover,
let u1, . . . , u` denote the children of w (if w is not a leaf). Then, for each
coloring cw ∈ Cw, set S(v, w, cw) := −∞ if cw is infeasible for case (1), otherwise
set (omit the sum if w is a leaf)

S(v, w, cw) := A(v, w) + WLCA(w, cw) +
∑̀
i=1

M(ui, v, w, cw) (8)

11

where

M(ui, v, w, cw) := max

{
max{S(v, ui, cui

)−A(v, w) : cui
∈ Cui

, cui
|cw}

max{S(ui, w, cui
) : cui

∈ Cui
, cui
|cw}

(9)
and S(w, v, cw) := −∞ if cw is infeasible for case (2), otherwise set (omit the
sum if w is a leaf)

S(w, v, cw) := A(w, v) + WLCA(w, cw) +
∑̀
i=1

M(ui, w, v, cw) (10)

where

M(ui, w, v, cw) := max

{
max{S(ui, v, cui)−A(w, v) : cui ∈ Cui , cui |cw}
max{S(w, ui, cui) : cui ∈ Cui , cui |cw}

.

(11)
Herein, A is defined exactly as in the proof of Theorem 2.

Correctness. For the correctness, we argue that for v, w ∈ V with v ≺ w
and for a coloring cw ∈ Cw that is feasible for case (1), the maximum weight
of an orientation of (T v

w, P
v
w) consistent with cw that orients the edges on

pathT (v, w) from v to w is A(v, w) + WLCA(w, cw) +
∑`

i=1 M(ui, v, w, cw), and,
hence, S(v, w, cw) is computed correctly. To this end, first consider the case
that w is a leaf. Then, T v

w is identical to pathT (v, w) and Qw = ∅. Hence, in
this case exactly the source–target pairs [s, t] ∈ P v

w with s ≺ t are satisfied
whose total weight per definition is A(v, w). Second, consider the case that w

is an internal vertex with children u1, . . . , u`. Moreover, let ~T v
w be an optimal

orientation consistent with cw that orients the edges on pathT (v, w) from v to w.
Assume that this orientation contains for a child ui the arc (ui, w). Then, with

respect to w and ui, the subgraph of ~T v
w induced by the vertices in V w

ui
is an

orientation of Tw
ui

consistent with a coloring cui
that clearly agrees with cw.

Thus, the contribution of ui to the weight of ~T v
w is the maximum S(ui, w, cui

)

over all cui
∈ Qui

that agree with cw. Similarly, if ~T v
w contains the arc (w, ui)

for a child ui, the subgraph of ~T v
w induced by the vertices in V v

ui
is an orientation

of T v
ui

consistent with a coloring cui
that clearly agrees with cw. Thus, the

contribution of the pairs in P v
w with at least one endpoint in Tui

is the maximum
of S(v, ui, cui)−A(v, w) over all cui ∈ Cui that agree with cw (here, we have to
subtract the number of satisfied pairs with both endpoints on pathT (v, w) that
are already accounted for by the term A(v, w) in (8)). Finally, observe that the
contribution of the cross pairs q in P v

w with cw(q) = 1 for which w is the least
common ancestor are not taken into account in the contributions of the ui’s.
This is done by the term WLCA in (8). The argumentation for the correctness of
the computation of S(w, v, cw) follows analogously.
Running time. Next, we analyze the running time. We use the following
notation and implementation details. For w ∈ V let Qw = {pw1 , . . . , pwnw

}.
A coloring cw : Qw → {0, 1} is realized by a tuple (c1, . . . , cnw

) ∈ {0, 1}nw

with cw(pwi) = ci for all 1 ≤ i ≤ nw. Moreover, the dynamic programming table S

12

is realized by two tables Sup
v,w and Sdown

v,w for every pair v, w ∈ V with v ≺ w
or v = w with an entry for every coloring c ∈ {0, 1}nw where Sup

v,w(c) = S(w, v, c)

and Sdown
v,w (c) = S(v, w, c). The table A is computed exactly as in the proof of

Theorem 2 in O(n2) time in a preprocessing step. Moreover, note that after O(n)
preprocessing time, least common ancestors of the source–target pairs can be
found in constant time [12].

To prove the running time, we show that for every pair v, w with v ≺ w
or v = w the computation in (8) and (10) can be done in O(2qv · qv · degT (w))
time. We focus on the computation of (8). The running time analysis for (10)
follows by the same arguments. The crucial observation is that the summands in
the sum in (8) are independent of each other in the sense that the determination
of the maximum for one child ui (the computation of M(ui, v, w, cw)) does not
depend on the decision made for a different child. Hence, for the computation
of the entries of Sdown

v,w proceed as follows. Consider each child u of w one after
another. Let Qw = {q1, . . . , qs, q′1, . . . , q′x} and Qu = {q1, . . . , qs, q′′1 , . . . , q′′y},
that is, {q1, . . . , qs} = Qw ∩Qu. The crucial point is that we assume that the
tables Sup

w,u and Sdown
v,u are sorted in lexicographical order of the colorings {0, 1}nu .

This ensures that the colorings of u that agree with a coloring cw ∈ {0, 1}nw

are ordered consecutively in Sup
w,u and Sdown

v,u . Since the tables Sup
w,u and Sdown

v,u

contain each at most 2qv entries, the sorting can be achieved in time O(2qv)
using bucket sort. Then, for each fixed v, w, and u all the values M(v, w, u, c)
can be computed in O(2qvqv) time in one iteration over Sup

w,u and Sdown
v,u and,

hence, for all children of w the running time is bounded by O(2qv · qv · degT (w)).
Thus, the overall running time is bounded by

O

(∑
v,w∈V

2qv · qv · degT (w)

)
= O(2qvqvn

2), (12)

since O
(∑

w∈V degT (w)
)

= O(n) in trees.

Bounded Signal Flow Over Edges

Let me be the maximum number of paths that pass through an edge. We consider
MTO instances where me is limited. We show that the problem is linear-time
solvable for me ≤ 2, but NP-hard for me ≥ 3, thereby establishing a dichotomy
on the complexity of MTO with respect to me.

For the polynomial-time algorithm, we employ the following lemma.

Lemma 1. If me ≤ 2, then the treewidth of Gc(T, P) is at most two.

Proof. We make use of the following characterization of graphs of treewidth at
most two [2]. A graph has treewidth at most two if it can be reduced to the
empty graph by the exhaustive application of the following data reduction rules:

(1) deleting vertices of degree 0 or 1,

(2) deleting a degree-2 vertex whose two neighbors are adjacent, and

13

(3) adding an edge between the two neighbors of a degree-2 vertex v if the
neighbors are non-adjacent, and subsequently deleting v.

We show that if me ≤ 2, then in the conflict graph Gc(T, P) we can find
a vertex to which one of the above rules applies. Further, we show that the
modified smaller conflict graph is still a conflict graph of some MTO instance.
Thus, the claim follows by induction.

Clearly, if Rule (1) or (2) applies to a vertex v in the conflict graph, then
we can just delete the corresponding pair in the MTO instance, and the conflict
graph of the resulting MTO instance is identical to the graph that results by
deleting v.

Next, we show that if neither Rule (1) nor Rule (2) applies, then we can find
a vertex v in the conflict graph to which Rule (3) applies. To this end, let (T, P)
with T = (V,E) denote an MTO instance and assume that T is rooted at an
arbitrarily chosen inner vertex r. Moreover, among all vertices that are the least
common ancestors of a pair in P , let x be one with maximum distance to the
root r (that is, a deepest least common ancestor). We distinguish two cases
based on whether x is an endpoint of a pair with both endpoints in Tx.

First, consider the case that x is the endpoint of a pair [s, t] ∈ P with s, t ∈
V (Tx). Let y be the child of x that is contained in the path between s and t.
Observe that by the choice of x there is no pair with both endpoints in Ty. Hence,
for every pair that is in conflict with [s, t], the corresponding path contains the
edge {x, y}. Thus, since me = 2, the pair [s, t] is in conflict with at most one
other pair, and therefore the corresponding vertex has degree at most one in the
conflict graph: a contradiction to the fact that neither Rule (1) nor (2) apply.

Second, consider the case that x is not an endpoint of any pair with both
endpoints in V (Tx). Moreover, let p = [s, t] ∈ P be an arbitrarily chosen pair
with s, t ∈ V (Tx). Let y1 and y2 denote the two children of x such that (without
loss of generality) s ∈ V (Ty1

) and t ∈ V (Ty2
). Let v[s,t] denote the vertex of Gc

corresponding to [s, t]. First, note that by the assumption that Rule (1) does not
apply, v[s,t] has degree at least two. Moreover, by the choice of x there is no pair
with both endpoints in V (Ty1) or in V (Ty2). Thus, every pair that is in conflict
with [s, t] uses either the edge {x, y1} or the edge {x, y2}. Thus, since me ≤ 2
and degGc

(v[s,t]) ≥ 2, there are exactly two pairs p′ = [s′, t′], p′′ = [s′′, t′′] ∈ P
that are in conflict with [s, t]. Assume without loss of generality that t′ ∈ V (Ty1

)
and s′′ ∈ V (Ty2

) (see Figure 1 for an illustration). Since Rule (2) does not
apply to v[s,t], we can assume that p′ and p′′ are not in conflict with each other.
Hence, Rule (3) can be applied to v[s,t]. Let G′c denote the graph that results
by first making the two neighbors of v adjacent and subsequently deleting v.
It remains to show how to transform the MTO instance such that the conflict
graph of the new instance is identical to G′c. To this end, consider the MTO
instance that results by deleting the vertices in V (Ty1

) ∪ V (Ty2
), removing the

pairs [s, t], [s′, t′], and [s′′, t′′] and subsequently adding a vertex y′, making y′

adjacent to x, and adding the pairs [s′, y′] and [y′, t′′] (see Figure 1 for an
illustration). Clearly, [s′, y′] and [y′, t′′] are in conflict. Moreover, since only the
pairs p, p′, and p′′ have endpoints in V (Ty1

) ∪ V (Ty2
), this transformation does

14

x

y1 y2

s tt′ s′′ t′′

s′

x

t′′

y′s′

Figure 1: Left: Illustration of the structure for a deepest least common ancestor x
of the pairs as described in the proof of Lemma 1. The dashed lines represent the
paths between the endpoints of a pair. If [s, t] is in conflict with two other pairs,
then these pairs must be conflicting with [s, t] in the edges {x, y1} and {x, y2}
since x a deepest least common ancestor. Right: Illustration of the replacement
of the subtrees rooted at y1 and y2 by a single vertex y′. Note that (s′, y′)
and (y′, t′′) are in conflict.

not change the conflicts with the other pairs. Further, we have that me ≤ 2 in
the resulting MTO instance.

Since width-two tree decompositions can be constructed in linear time [2] and
weighted Vertex Cover can be solved in linear time on graphs with constant
treewidth [15], this yields linear-time solvability for Weighted Maximum Tree
Orientation with me ≤ 2.

Theorem 4. If me ≤ 2, then Weighted Maximum Tree Orientation can
be solved in linear time.

Proof. To be able to determine the path between a pair [s, t] in O(n) time, we
root the tree arbitrarily and calculate in linear time a data structure that allows
least common ancestor queries in constant time [12]; the path can then be found
by going upwards from s and t until hitting their least common ancestor, and
then joining the two partial paths. We then construct the conflict graph by
marking for each path the corresponding edges with the pair and the direction,
and then registering a possible conflict for each tree edge. Since there can be
only linearly many markings and conflicts, the construction takes O(n) time. A
tree decomposition of width two can then be found in linear time [2], and, as
mentioned above, solving weighted Vertex Cover on a graph with treewidth
at most two takes only linear time, too [15].

We can further prove that for me ≥ 3, MTO is NP-hard even on stars, that
is, on trees where all leaves are attached to the same vertex. The proof is by
reduction from MaxDiCut.

Theorem 5. Maximum Tree Orientation on stars with me ≥ 3 is NP-
complete.

15

Proof. As Medvedovsky et al. [14] pointed out, the NP-hard MaxDiCut problem,
defined as follows, can be reduced to MTO on stars.

MaxDiCut
Given a directed graph G = (V,A) and a nonnegative integer k, is
it possible to find a subset of vertices C ⊆ V such that there are at
least |A| − k arcs (v, w) ∈ A with v ∈ C and w /∈ C?

From a MaxDiCut instance (G = (V,A), k), one constructs an equivalent
MTO instance (T = (V ′, E), P, k) by setting V ′ := V ∪{r}, E := {{v, r} | v ∈ V },
and P := A, where r /∈ V is a new root vertex [14]. Clearly, if a MaxDiCut
instance has maximum degree three, then it reduces to an MTO instance
with me ≤ 3. Thus, it remains to show that MaxDiCut with maximum degree
three is NP-hard. (Unfortunately, there seems to be no apt reduction from the
undirected version MaxCut, which is NP-hard for maximum degree three [25].)

MaxDiCut can also be formulated as the problem to delete up to k arcs to
obtain a graph where every vertex is only startpoint or only endpoint of arcs.
We can characterize such graphs by a forbidden substructure consisting of three
vertices u, v, w connected by the arcs (u, v) and (v, w) (the arcs (u,w) and (w, u)
may or may not be present). Thus, if we ignore graphs with multiple arcs between
two vertices, we have three forbidden induced subgraphs on three vertices. In
this way, MaxDiCut is similar to the Transitivity Deletion problem [23],
which given a directed graph, asks for up to k arc deletions to make it transitive,
that is, to fulfill for all u, v, w ∈ V that (u, v) ∈ A ∧ (v, w) ∈ A ⇒ (u,w) ∈ A.
Transitive graphs are characterized by two of the three forbidden subgraphs
for MaxDiCut; the subgraph with {(u, v), (v, w), (u,w)} ⊆ A is not forbidden.
However, if we examine the directed graphs that are produced in the reduction
from 3-SAT that proves NP-hardness of Transitivity Deletion [23, Sect. 3.1],
we notice that this substructure does not occur, and cannot be created by arc
deletions. Thus, solving Transitivity Deletion and MaxDiCut on these
directed graphs is equivalent. Since the constructed instances also have degree
at most three, we obtain the NP-hardness of MaxDiCut with maximum degree
three. It is easy to see that MTO is contained in NP, so we obtain the claimed
theorem.

Observations on Protein Interaction Networks

The goal in this section is to explore the space of practically meaningful pa-
rameterizations, here focusing on biological applications. We first performed
experiments based on the same data as used by Medvedovsky et al. [14]. The
network is a yeast protein–protein interaction network from the Database of
Interacting Proteins (DIP) [18], containing 4,737 vertices and 15,147 edges. The
cause–effect pairs were obtained from gene knockout experiments by Yeang et
al. [26] and contain 14,502 pairs. After discarding small connected components
and contracting cycles, we obtained a tree with 1,278 vertices and 5,569 pairs.1

1These numbers differ slightly from the ones stated by Medvedovsky et al. [14]. We do not
use the additional kinase–substrate data, which is only meaningful to evaluate the orientations

16

The resulting tree is, as already observed by Medvedovsky et al. [14], very star-
like: there is one vertex of degree 1,151 and 1,048 degree-one vertices attached
to it. The remaining 229 vertices have degree 1 to 4. All paths connecting
cause–effect pairs pass through the central vertex.

We first note that this MTO instance is actually fairly easy to solve exactly.
The Integer Linear Program (ILP) by Medvedovsky et al. [14, Sect. 3.1] and
Vertex Cover on the conflict graph solved by either an ILP or a simple
branching strategy with data reduction all solve the instance in less than a
second.2 The branching strategy finds a vertex v of maximum degree and
branches into the two cases of taking v into the vertex cover or taking all
neighbors of v into the vertex cover. Before each branch, degree-1 vertices are
eliminated by taking their neighbor into the vertex cover. The search in the
second branch is cut short when the accumulated vertex cover is larger than
that of the first branch.

Note that all three algorithms do not require the parameter k (number of
unsatisfied pairs) as input, but will determine the minimum k such that there is
a solution.

The reason that these strategies work so well is probably due to the low value
of the parameter k: only 77 cause–effect pairs cannot be satisfied. This limits
the size of the branch-and-bound tree that underlies all three methods.

In Table 1, we examine several other parameters. Since there are still
pt = 5, 569 pairs left after contracting all cycles in the network, using this
parameter for a fixed-parameter algorithm seems infeasible. Unfortunately, since
all paths run through a single vertex, the parameter mv is not any more useful.
Only about 5 % of the pairs are cross pairs after the data reduction, so q is
already a more promising parameter. However, with a value of q = 417, this
parameter seems not very helpful. Even if we eliminate pairs that do not conflict
with any other pairs, leaving only nc = 1, 287 pairs, we still find at least 306
cross pairs (parameter q′). Again, because all paths run through a single vertex,
considering cross pairs per vertex does not help here. In summary, for this
particular instance the number of unsatisfiable pairs k is clearly the most useful
parameter.

To examine the effect of the sparseness of the input instance on the various
parameters, we investigated another yeast protein interaction network assembled
by Nir Yosef from various sources (see references in [4]). In this network, each
edge is annotated with a probability of interaction. Thus, by thresholding, we
can obtain graphs of different sparseness. The results are shown in Table 2.

We see that, here, the parameter k is not always a clear winner. When the
network becomes sparser, the components that will be shrunk to a single vertex
by the cycle contraction will be smaller, leaving fewer pairs with both endpoints
on the same tree vertex, and thereby increasing the number of potential conflicts.

obtained, and which requires an arbitrary parameter choice not documented by Medvedovsky
et al. [14].

2The running times are 0.09 s, 0.02 s, and 0.13 s, respectively, on a 2.67 GHz Intel Xeon W3520
machine, using GLPK 4.44 for the ILPs, and with the branching strategy implemented in
Objective Caml.

17

Parameter Value

n Number of network vertices 4,654
m Number of network edges 15,104
p Number of pairs 14,155
nt Vertices in MTO instance 1,278
pt Number of pairs in MTO instance 5,569
n∗ Number of vertices in star 1,049
mv Max. number of pairs per vertex 5,569
me Max. number of pairs per edge 371
q Number of cross pairs 417
qv Max. number of cross pairs per vertex 417
q′ Number of cross pairs after data reduction 306
q′v Max. number of cross pairs per vertex after data reduction 306
nc Number of vertices in conflict graph 1,287
mc Number of edges in conflict graph 4,626
k Number of unsatisfiable pairs 77

Table 1: Values for various parameters for the protein interaction network
instance from Medvedovsky et al. [14].

threshold n m p nt pt n∗ mv me q qv q′ q′v nc mc k

0.000000 5385 39921 14393 799 2014 750 2014 59 7 7 3 3 115 292 17
0.154420 4530 35041 11522 747 2203 705 2203 298 27 27 20 20 475 1632 40
0.371369 4254 32135 10740 796 2443 749 2443 275 47 47 35 35 528 2424 46
0.573290 3871 27128 9445 777 2225 704 2225 268 32 32 13 13 140 311 32
0.573313 2546 8977 5279 638 2311 477 2310 208 252 252 151 151 561 2394 68
0.830093 2206 7136 4346 643 2206 449 2206 192 304 304 193 193 727 4017 83
0.886308 1407 3646 1607 441 787 260 785 45 106 106 88 88 311 1876 75
0.943001 1135 3069 920 361 464 195 463 32 57 57 42 42 179 801 44
0.954421 1039 2504 843 350 489 175 461 45 85 73 71 61 215 3001 81
0.957338 895 2060 681 304 405 119 375 39 64 54 58 50 240 3092 89
0.965986 874 2018 666 299 477 103 411 165 90 78 85 75 358 12284 110
0.984753 668 1676 312 206 163 95 162 20 7 7 6 6 55 222 15
0.989212 581 1322 188 192 167 69 161 86 24 24 24 24 141 1088 32
0.989233 307 681 71 121 70 32 66 36 21 21 11 11 52 219 7
0.990409 294 666 28 114 27 26 26 21 2 2 2 2 9 8 2

Table 2: Parameters for the largest connected component of the protein interac-
tion network assembled by Nir Yosef [4] with different thresholds for the edge
probability. The uneven gaps in the sizes of the instances are because many
edges have identical weights.

18

Only for very high thresholds, the parameter becomes small again, since then
the original instance is already much smaller. Still, all instances can be solved
in less than one second by the three algorithms mentioned above, which exploit
low values of k.

We also see that for denser graphs, the parameter values based on the number
of cross pairs are quite low, e. g. q′v = 3 for the whole graph. Thus, it seems likely
that these instances can be quickly solved by the algorithm from Theorem 3,
running in O(2q

′
v · n2 · q′v) time. One possible explanation for the low value for

these parameters is that the networks exhibit a linear structure. For example, if
each protein can be assigned a distance to the nucleus, and interactions mostly
transport information to or from the nucleus, then we would expect to have only
few cross pairs.

The parameter mv could be expected to be not too high in biological networks,
since otherwise this would make the network less robust, since elimination of
one vertex would disrupt too many paths. However, one vertex in the tree under
consideration can actually correspond to a very large component in the original
graph, which weakens this effect. Therefore, this parameter is more useful in
sparser graphs, where not too many graph vertices are joined into a tree vertex.
However, for the given instances, it seems small enough to be exploited only for
fairly small instances, where other parameters would give good results, too.

The parameter me could similarly be expected to be low in sparse networks;
however, the NP-hardness result already for me ≥ 3 (Theorem 5) makes practical
use of this parameter unlikely.

Conclusions

We started a parameterized complexity analysis of (Weighted) Maximum
Tree Orientation, obtaining a more fine-grained view on the computational
complexity of this NP-hard problem. In this line, there are still several challenges
for future investigations. For instance, it is open whether MTO is fixed-parameter
tractable with respect to the parameter “number of satisfied pairs” (n − k).
Further, in the spirit of “distance-from-triviality parameterization” [10, 16] it
would be interesting to study the parameterized complexity of MTO with respect
to the parameter “number of all possible pairs minus the number of input pairs”—
recall that for parameter value zero MTO is polynomial-time solvable [11]. MTO
restricted to stars is still NP-hard, but then at least one quarter of all input
pairs can always be satisfied [14]. Hence, it would be interesting to study above
guarantee parameterization [15,16] with respect to the number of satisfied pairs.
MTO can be translated into a vertex covering problem (see Proposition 1) on a
graph class that is K4-free—this motivates to study whether vertex covering on
this graph class can be done faster than on general graphs. Clearly, MTO brings
along numerous further parameters and parameter combinations which can
make a more comprehensive multivariate complexity analysis [16] very attractive.
Often, it is desirable to not only list a single solution, but to enumerate all
optimal solutions. Our dynamic-programming-based algorithms seem suitable for

19

this. Following Gamzu et al. [8] and extending the studies for MTO as pursued
here to the more general case of mixed graphs with partially already oriented
edges is of high interest. First steps in this direction have very recently been
undertaken by Silverbush et al. [20] and Elberfeld et al. [6]. Finally, it seems
promising to examine the parameters based on cross pairs in other networks such
as communication networks, and to try to exploit these parameters for other
hard network problems.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed more or less equally, RN initiating the study of MTO
under the viewpoint of multivariate complexity analysis and JU coming up with
the major algorithmic ideas which have been worked out in more detail by DK.

Acknowledgements

JU and partly FH were supported by the Deutsche Forschungsgemeinschaft
(DFG), research project PABI (NI 369/7).

Major parts of the work were done while BD and DK were with the Universität
Tübingen, FH was with the Humboldt-Universität zu Berlin, and RN and JU
were with the Friedrich-Schiller-Universität Jena.

We are grateful to two anonymous referees whose insightful remarks helped
to improve the presentation of our work.

References

[1] E. Alm and A. P. Arkin. Biological networks. Current Opinion in Structural
Biology, 13(2):193–202, 2003.

[2] S. Arnborg and A. Proskurowski. Characterization and recognition of partial
3-trees. SIAM Journal on Algebraic and Discrete Methods, 7(2):305–314,
1986.

[3] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209(1–2):1–45, 1998.

[4] S. Bruckner, F. Hüffner, R. M. Karp, R. Shamir, and R. Sharan. Topology-
free querying of protein interaction networks. Journal of Computational
Biology, 17(3):237–252, 2010.

20

[5] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[6] M. Elberfeld, D. Segev, C. R. Davidson, D. Silverbush, and R. Sharan.
Approximation algorithms for orienting mixed graphs. In Proc. 22nd CPM,
LNCS. Springer, 2011. To appear.

[7] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[8] I. Gamzu, D. Segev, and R. Sharan. Improved orientations of physical
networks. In Proc. 10th WABI, volume 6293 of LNBI, pages 215–225.
Springer, 2010.

[9] A. Gitter, J. Klein-Seetharaman, A. Gupta, and Z. Bar-Joseph. Discovering
pathways by orienting edges in protein interaction networks. Nucleic Acids
Research, 39(4):e22, 2011.

[10] J. Guo, F. Hüffner, and R. Niedermeier. A structural view on parameterizing
problems: distance from triviality. In Proc. 1st IWPEC, volume 3162 of
LNCS, pages 162–173. Springer, 2004.

[11] S. L. Hakimi, E. F. Schmeichel, and N. E. Young. Orienting graphs to
optimize reachability. Information Processing Letters, 63(5):229–235, 1997.

[12] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM Journal on Computing, 13(2):338–355, 1984.

[13] A. V. Karzanov. Èkonomnyj algoritm nahoždeniâ bikomponent grafa [in
Russian: An efficient algorithm for finding the bicomponents of a graph].
In Trudy tret’ej zimnej školy po matematičeskomu programmirovaniû i
smežnym voprosam [Proceedings of the 3rd Winter School on Mathematical
Programming and Related Problems], pages 343–347. Moscow Engineering
and Construction Institute (MISI), 1970.

[14] A. Medvedovsky, V. Bafna, U. Zwick, and R. Sharan. An algorithm for
orienting graphs based on cause-effect pairs and its applications to orienting
protein networks. In Proc. 8th WABI, volume 5251 of LNBI, pages 222–232.
Springer, 2008.

[15] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Number 31
in Oxford Lecture Series in Mathematics and Its Applications. Oxford
University Press, 2006.

[16] R. Niedermeier. Reflections on multivariate algorithmics and problem
parameterization. In Proc. 27th STACS, volume 5 of Leibniz International
Proceedings in Informatics, pages 17–32. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2010.

[17] R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algorithms
for weighted vertex cover. Journal of Algorithms, 47(2):63–77, 2003.

21

[18] L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, and
D. Eisenberg. The database of interacting proteins: 2004 update. Nucleic
Acids Research, 32(Database issue):D449–D451, 2004.

[19] R. Sharan and T. Ideker. Modeling cellular machinery through biological
network comparison. Nature Biotechnology, 24:427–433, April 2006.

[20] D. Silverbush, M. Elberfeld, and R. Sharan. Optimally orienting physical
networks. In Proc. 15th RECOMB, volume 6577 of LNBI, pages 424–436.
Springer, 2011.

[21] Y. Song, C. Liu, X. Huang, R. L. Malmberg, Y. Xu, and L. Cai. Efficient
parameterized algorithms for biopolymer structure-sequence alignment.
IEEE/ACM Trans. Comput. Biology Bioinform, 3(4):423–432, 2006.

[22] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972.

[23] M. Weller, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. On making
directed graphs transitive. Journal of Computer and System Sciences, 2011.

[24] M. Werther and H. Seitz, editors. Protein–protein interaction, volume 110
of Advances in Biochemical Engineering/Biotechnology. Springer, 2008.

[25] M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing,
10(2):297–309, 1981.

[26] C.-H. Yeang, T. Ideker, and T. Jaakkola. Physical network models. Journal
of Computational Biology, 11(2–3):243–262, 2004.

22

