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Abstract. We present a framework for the automated generation of exact
search tree algorithms for NP -hard problems. The purpose of our approach
is two-fold: rapid development and improved upper bounds.

Many search tree algorithms for various problems in the literature are
based on complicated case distinctions. Our approach may lead to a much
simpler process of developing and analyzing these algorithms. Moreover,
using the sheer computing power of machines it can also provide improved
upper bounds on search tree sizes (i.e., faster exact solving algorithms) in
comparison with previously developed “hand-made” search trees. The gen-
erated search tree algorithms work by expanding a “window view” of the
problem with local information, and then branch according to a precalcu-
lated rule for the resulting window.

A central example in this work is given with the NP -complete Cluster

Editing problem, which asks for the minimum number of edge additions and
deletions in a graph to create a cluster graph (i.e., a graph which is a disjoint
union of cliques). For Cluster Editing, a hand-made search tree is known
with O(2.27k) worst-case size, which is improved to O(1.92k) due to our new
method. (Herein, k denotes the number of edge modifications allowed.) A
refinement of the search tree generator is presented, which tries to direct
the expansion of the window towards advantageous case sets. The scheme
is also successfully applied to several other graph modifications problems;
generalizations to other problems are sketched.
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Chapter 1

Introduction

Many important real-world problems are NP -hard, which means there are
no known polynomial-time algorithms to solve them. Several approaches
have been proposed to attack these problems, among them approximation
algorithms and heuristic algorithms. Often, however, it is important to find
exact (i.e., optimal) solutions. While all known more refined exact algorithms
for NP -hard problems still run in super-polynomial time, they can show vast
differences in both theoretical and practical performance.

A recent survey by Woeginger [Woe03] examines various approaches to
exact algorithms for NP -hard problems. One of the most common is pruning
the search tree, outlined as follows.

Usually, a feasible solution of an optimization problem can be split into
several “pieces”; for example, for subset problems, every feasible solution can
be specified as a subset of an underlying ground set, and we can for each ele-
ment of the ground set consider separately whether it is part of the solution.

Every NP -complete optimization problem can be solved by exhaustively
enumerating all feasible solutions and checking for the optimal one. The
enumeration can be organized in a search tree:

• Consider some piece of the feasible solution;

• Determine all possible values of this piece (for example for subset prob-
lems, two values: element of the set or not);

• Branch recursively into several subcases according to these possible
values.

The gain over plain enumeration in this approach comes from the pos-
sibility to recognize values for certain pieces of the solution that cannot be
part of any optimal solution. In those cases, the whole subtree below the
corresponding branch can be pruned, leading to a potentially large speedup.
The tools that will be introduced in Sect. 1.4 provide a means for worst-case
runtime analysis of these search trees.
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Using this approach, many exact algorithms for well-known NP -complete
problems have been devised. For instance, search tree based algorithms have
been developed for

• Satisfiability [Kul99, Hir00],

• Maximum Satisfiability [BR99, NR00b, CK02, GHNR03],

• Exact Satisfiability [DP02, HK02],

• Independent Set [DJ02, Rob86, Rob01],

• Vertex Cover [CKJ01, NR03b],

• Constraint Bipartite Vertex Cover [FN01]

• 3-Hitting Set [NR03a],

and numerous other problems.
Most of these algorithms have undergone some kind of “evolution” to-

wards better and better worst-case bounds on their running times. These
improved bounds, however, usually come at the cost of distinguishing be-
tween more and more combinatorial cases, which makes the development
and the correctness proofs a tedious and error-prone task. For example,
in a series of papers the upper bound on the search tree size for an algo-
rithm solving Maximum Satisfiability was improved from 1.62K [MR99]
to 1.38K [NR00b] to 1.34K [BR99], and recently to 1.32K [CK02], where K
denotes the number of clauses in the given formula in conjunctive normal
form.

As Hirsch and Kulikov [HK02] recently observed in the context of sat-
isfiability problems, it would be interesting to design a computer program
that outputs mechanically proven worst-case upper bounds based on simple
combinatorial reduction rules that lead to nontrivial and useful search tree
algorithms. In this work, we present such an automated approach for the
development of efficient search tree algorithms, focusing on NP -hard graph
modification problems.

Our work may be considered as a special case of algorithm engineer-
ing. We present programs not to solve decision or optimization problems,
but to develop efficient programs (i.e., search tree algorithms with “small”
exponential worst-case running time).

Our approach is based on the separation of two tasks in the development
of search tree algorithms—namely, on the one hand, the investigation and
development of clever problem-specific rules (this is usually the creative,
thus, the “human part”) and, on the other hand, the analysis of numerous
cases using these problem-specific rules (this is the “machine part”). The
software environment we deliver can also be used in an interactive way in
the sense that it points the user to the worst case in the current case analysis.
Then, the user may think of additional problem-specific rules to improve this
situation, obtain a better bound, and repeat the process.



7

The automated generation of search tree algorithms in this work deals
mainly with the class of graph modification problems [Cai96, LY80, NSS01],
although the basic ideas appear to be generalizable to other graph and even
non-graph problems. In particular, we study the following NP -complete
edge modification problem Cluster Editing, which is motivated by, e.g.,
data clustering applications in computational biology [Sha02, SST02] and
correlation analysis in machine learning [BBC02]:

Input: An undirected graph G = (V,E) and a nonnegative
integer k.

Question: Can we transform G, by deleting and adding at
most k edges, into a graph that consists of a disjoint union of
cliques?

In Sect. 2.5, we will present a search tree based algorithm exactly solving
Cluster Editing in O(2.27k + |V |3) time. This algorithm is based on
case distinctions developed by “human case analysis” and it took us about
three months of development and verification. Now, based on some relatively
simple problem-specific rules (whose correctness is easy to check), we obtain
an O(2.16k + |V |3) time algorithm for the same problem. This is achieved by
an automated case analysis that checks much more subcases than we were
able to do “by hand”. With additional problem-specific rules, we can even
achieve O(1.92k + |V |3) time.

Altogether (including computation time on a single Linux PC and the
development of the reduction rules), using our mechanized framework this
significantly improved running time for an exact solution of Cluster Edit-

ing could be achieved in about one week.

The example application to Cluster Editing exhibits the power of our
approach, whose two main potential benefits we see as

1. rapid development and

2. improved upper bounds

due to automation of tiresome and more or less schematic but extensive
case-by-case analysis. Thus, we hope that this work contributes a new way
to relieve humans from tedious and error-prone work. Besides Cluster

Editing, we present applications of our approach to other NP -complete
graph modification (i.e., edge or vertex deletion) problems including Clus-

ter Deletion (the special case of Cluster Editing where only edge dele-
tions are allowed) and the generation of triangle-free graphs and cographs.
Additionally, we present initial results for Bounded Degree 3 Dominat-

ing Set.

Some parts of the results from Chap. 3–5 were presented in [GGHN03a].
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1.1 Structure of the Work

In the remaining parts of this chapter, in Sect. 1.2, we will first introduce
some basic notations and definitions, mainly from graph theory. Then,
in Sect. 1.3.2, we discuss the computation of exact solutions for NP -hard
problems. Basic tools for mathematical analysis of the performance of our
algorithms are recurrences and branching vectors; they are introduced in
Sect. 1.4. Section 1.5 gives a brief introduction to the Ocaml programming
language, which was used to implement our framework.

Chapter 2 introduces and motivates the problem class of graph modifica-
tion problems, which ask for the minimal amount of changes to the edge or
vertex set of an input graph needed to obtain a graph with a certain prop-
erty. The focus is on Cluster Editing (Sect. 2.2), which is motivated from
computational biology, machine learning and other areas. In Sect. 2.2.2, we
devise a simple parameterized search tree algorithm for Cluster Editing.
The concept of annotations, which can capture additional information over
the course of a search tree algorithm, is introduced in Sect. 2.3. In Sect. 2.4,
we make a brief excursion to a problem kernel reduction for Cluster Edit-

ing, a technique valuable to reduce the size of an instance of a parameter-
ized problem before applying further solving techniques. In Sect. 2.5 then,
we present the algorithm which gave the main incentive for the development
of the automation framework: A refined search tree algorithm for Cluster

Editing. The treatment of Cluster Editing is rounded off by devising
some heuristic improvements in Sect. 2.6.

Chapter 3 eventually introduces the idea of automating the quest for ef-
ficient algorithms. The refined Cluster Editing algorithm from Sect. 2.5,
when slightly simplified, is identified as an element of a large set of algo-
rithms (Sect. 3.1). We design a method to find elements of these sets which
are optimal in Sect. 3.2. Section 3.3 describes some optimizations which are
essential to find results within reasonable time. The results for Cluster

Editing presented in Sect. 3.4 prove the validity of the approach with an
algorithm noticeably improving upon the manually found one. The applica-
bility of our algorithm for finding branching rules is not limited to Cluster

Editing; we give a detailed description of the application to a large class of
graph modification problems in Sect. 3.5.

In Chap. 4, we extend the set of considered search trees by examining
algorithms that not only vary in the rules for the branching of each case
considered, but also vary the set of cases itself. To get more exploitable
structure in the input graphs, we can identify “trivial” instances of the prob-
lem, and assume them to be eliminated, thereby creating invariants which
can be utilized to restrict the set of generated cases. We devise such a rule
for Cluster Editing in Sect. 4.1, and then go on to describe how to find
optimal search tree algorithms using this rule in Sect. 4.2. In Sect. 4.3, we
also give a proposition which allows the application of this scheme to several
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further graph modification problems.

In Chap. 5, we present a variety of experimental results of applications
of our frameworks to graph modification problems. We discuss edge deletion
(Sect. 5.1) and vertex deletion (Sect. 5.2) problems. With Bounded De-

gree Dominating Set, we also demonstrate an application to a problem
which is not a graph modification problem (Sect. 5.3). A summary (Sect. 5.4)
shows improvements over known results for the discussed problems.

Several important details of the implementation are explained in Chap. 6.
The efficient representation of graphs is shown in Sect. 6.1; Sect. 6.2 deals
with the efficient handling of sets of branching vectors, which is a major
computational bottleneck for our framework.

We conclude with a brief summary and an outlook to further work in
Chap. 7.

1.2 Preliminaries and Basic Notation

All graphs discussed in this work are assumed to be undirected, simple, and
without self-loops. We call a graph G′ = (V ′, E′) induced subgraph of a
graph G = (V,E) iff V ′ ⊆ V and E′ = {{u, v} | u, v ∈ V ′ and {u, v} ∈ E}.

A graph property Π is simply a mapping from the set of graphs to true
and false. If a graph G maps to true under Π, one says that “G has prop-
erty Π”, or “G is a Π-graph”. A property is nontrivial if the set of graphs
with the property and the set of graphs without the property are both in-
finite. If for any graph G with property Π every induced subgraph of G
is also a Π-graph, then Π is a hereditary property. A property Π has a
forbidden set characterization if there is a set of graphs F such that a graph
is a Π-graph iff it contains no graph from F as induced subgraph. Note
that clearly every property with forbidden set characterization is hereditary;
also any hereditary property has a forbidden set characterization, but the
forbidden set is not necessarily finite [Cai96].

If x is a vertex in a graph G = (V,E), then by NG(x) we denote the set
of its neighbors, i.e., NG(x) := {v | {x, v} ∈ E}. The degree of a vertex is
the number of neighbors: degG(x) := |NG(x)|. We omit the index if it is
clear from the context. With vertex pair, we always mean an unordered pair
of distinct vertices, i.e., {x, x} is not a vertex pair. A clique is a complete
graph, i.e., a graph G = (V,E) where for all u, v ∈ V the edge {u, v} is in E.

We use the notation G \ W for a set W ⊆ V to denote the induced
subgraph of G where all vertices in W are deleted, i.e., G \ W := (V \
W, {{u, v} ∈ E | u /∈ W ∧ v /∈ W}).

For a set A and an element x, we write A + x for A ∪ {x} and A − x
for A \ {x}. For two sets E and F , E 4 F is the symmetric difference of E
and F , i.e., (E \ F ) ∪ (F \ E).

We use standard notation for special graphs: Pn is a path of n vertices;
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PSfrag replacements

P3 P4 triangle (C3) claw (K1,3)

Figure 1.1: Some special graphs

Cn is a cycle of n vertices; and Kn,m is the complete bipartite graph with
partitions of size n and m (see also Fig. 1.1).

1.3 Exact Solutions for NP-Hard Problems

We will show two approaches to analyze and improve the performance of
exact algorithms for NP -hard problems.

1.3.1 Improved Exponential Bounds

As Woeginger notes [Woe03], the quality of exact algorithms for NP -hard
problems is sometimes hard to compare, since their analysis is done in terms
of different parameters. He recommends the approach of including an explicit
measure for the problem size in the problem specification. For instance, for
the Maximum Independent Set problem, we can decide to do the analysis
in terms of the number of vertices n, instead of in terms of the number of
edges or other properties of the input.

One can then usually formulate a trivial algorithm which runs in O(cn)
time. The basic goal is to improve upon the constant c, i.e., to devise al-
gorithms with a smaller exponential base. Our framework to be presented
offers the possibility to automate important parts of this search.

1.3.2 Parameterized Complexity

One of the newer areas in complexity theory is to study parameterized com-
plexity [DF99]. It is based on the observation that for many hard problems,
the apparently unavoidable combinatorial explosion can be confined to a
“small part” of the input, the parameter, so that the problems can be solved in
polynomial time when the parameter is fixed. For instance, the NP -complete
Vertex Cover problem can be solved by an algorithm with O(1.3k + kn)
running time [CKJ01, NR99, NR03b], where the parameter k is a bound
on the maximum size of the vertex cover set we are looking for and n is the
number of vertices in the given graph. As can be easily seen, this yields an ef-
ficient, practical algorithm for small values of k. The parameterized problems
that have algorithms of time complexity f(k)·nO(1) are called fixed-parameter
tractable with respect to parameter k, where f can be an arbitrary function
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depending only on k, and n denotes the overall input size. An algorithm
having this time complexity is called fixed-parameter algorithm. For details,
we refer the reader to the monograph by Downey and Fellows [DF99] and
the various survey papers on this field [AGN01, Fel02, Dow03].

Our framework is able to generate fixed-parameter algorithms; for ex-
ample, one algorithm found for Cluster Editing runs in O(1.92k + |V |3)
time, where k is the number of edge modifications, and is therefore a fixed-
parameter algorithm with respect to parameter k.

1.4 Branching Vectors

Our bounded search tree algorithms work recursively. The number of recur-
sions is the number of nodes in the corresponding search tree. This number
is governed by homogeneous, linear recurrences with constant coefficients. It
is well-known how to solve them and the asymptotic solution is determined
by the roots of the characteristic polynomial (cf. Kullmann [Kul99] for more
details).

If the algorithm solves a problem of “size” s and calls itself recursively for
problems of sizes s − d1, . . . , s − di, then (d1, . . . , di) is called the branching
vector of this recursion. It corresponds to the recurrence

ts = ts−d1
+ · · · + ts−di

,

where ts denotes the number of leaves in the search tree solving an instance
of size s and tj = 1 for 0 ≤ j < d with d = max(d1, . . . , di).

This recurrence corresponds to the characteristic polynomial

zd − zd−d1 − · · · − zd−di .

The characteristic polynomial has a single root α which has maximum
absolute value and is a positive real; then, ts is O(αs). We call α the branch-
ing number that corresponds to the branching vector (d1, . . . , di).

Consider a parameterized problem with parameter k and a search tree
algorithm for it, consisting of several branching rules. For each branching
rule, we can give a branching vector which has as many elements as the
rule branches; each element states the amount by which the parameter is
decreased for that branch. The size of the search tree is then O(αk), where k
is the parameter and α is the largest branching number that will occur.
For example, in Sect. 2.5, we will give an algorithm for Cluster Editing

where this branching number is about 2.27; it belongs to the branching vector
(1, 2, 2, 3, 3).
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1.5 A Brief Introduction to Objective Caml

Our implementation of the framework for automated generation of search
tree algorithms was implemented mainly in the Objective Caml (Ocaml)
language [LVD+96]. Ocaml is a general purpose programming language that
combines functional, imperative, and object-oriented programming. It be-
longs to the ML family of programming languages and has been implemented
at INRIA Rocquencourt within the “Projet Cristal” group.

The language is statically typed; its type system ensures the correct eval-
uation of programs. Types are automatically inferred. Code can be inter-
preted interactively, compiled to byte code, or compiled to native code for a
wide variety of platforms. Several key points proved to be very advantageous
for our purposes:

• Excellent support for functional style programming. A purely func-
tional program is just a single expression to be evaluated; there are no
side effects or assignments, evaluating a function multiple times will
always yield the same result. Programming in functional style makes
code easier to write, understand, and debug. This facilitated rapid
prototype development.

• Safety. An Ocaml program cannot “crash”; the type system and the
run time system eliminate common errors like buffer overflows, unini-
tialized variables, or type cast errors. The automatic memory manage-
ment (garbage collector) also removes the burden of having to manage
memory manually, and eliminates the bugs related to that, like mem-
ory leaks and dangling pointers. This is very advantageous for the
implementation of branching vector sets (cf. Sect. 6.2), where tree-like
structures are created, joined and discarded frequently.

• User-definable data-types: The user can define new recursive data-
types as a combination of record and variant types. These types are
very useful to represent recursive algorithms with several alternatives
for each step.

• Finally, a high quality native code compiler producing very fast code.
Since our programs run up to several days, this is very important. The
standard Ocaml implementation also allows easy access to functions
written in C for low-level tasks, which we used for interfacing with the
nauty library [McK90].

Since Ocaml allows to express complicated control flow clearly and com-
pactly, we also use it for the pseudo-code in this work; all pseudo-code is valid
Ocaml. To make these examples accessible to the reader with few experience
in functional languages, we will now give a short introduction to the Ocaml
language. We assume familiarity with at least one imperative language, like
C or Pascal.
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1.5.1 Expressions and Functions

We will present the basic features of the Ocaml language largely by exam-
ples. For a more thorough introduction, we refer to the extensive book by
Chailloux, Manoury and Pagano [CMP00]; a reference of syntax, semantics
and standard library is available online [LDG+02].

In addition to the traditional edit-compile-run model, Ocaml can also
be run interactively: The user types phrases, terminated by ;;, in response
to the # prompt, and the system evaluates them and prints their type and
value:

# 1 + 2 * 3;;

- : int = 7

The answer of the Ocaml system consists of three parts: The identifier
to which the value is bound (none (-) in this example), the type of the
expression (int, i.e., integer), and its evaluated value (here simply the result
of the arithmetic operations).

The let keyword is used to bind values to identifiers:

# let a = 3;;

val a : int = 3

# a;;

- : int = 3

Here val a : shows that the value was bound to the identifier a.
The fun keyword creates unnamed functions. In the notation for a type,

t1 -> t2 denotes the type of a function which maps values of type t1 to
values of type t2. The expression which defines the function is compiled to
an internal format and printed as <fun>:

# let f = fun x -> x * x;;

val f : int -> int = <fun>

As common in mathematics, function application is done by simply giving
the argument after the function:

# (fun x -> x * x) 3;;

- : int = 9

# let f = fun x -> x * 2;;

val f : int -> int = <fun>

# f 17;;

- : int = 34

Note that unlike in many other languages, no parentheses are required
around the argument. As with trigonometric functions, sin x + cos x

means (sin x) + (cos x). Parentheses are required if the argument con-
tains arithmetics, as in sin (x + 2).
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For simplicity, the type system of Ocaml only knows functions with ex-
actly one parameter. Functions with more than one parameter can be “em-
ulated” by so-called currying :

# let f = fun x -> (fun y -> x + y * y);;

val f : int -> int -> int = <fun>

# f 1;;

- : int -> int = <fun>

# f 1 4;;

- : int = 17

The type int -> int -> int is to be read as int -> (int -> int),
i.e., a function which takes an integer and returns a function taking another
integer and returning an integer. Function application is right-associative,
i.e., f 1 4 is evaluated as (f 1) 4. Evaluating f 1 first returns a function
which maps an integer y to 1 + y * y; passing 4 to this function yields the
final value of 17.

Fortunately, the let keyword provides “syntactic sugar” for defining func-
tions with single or multiple arguments by currying:

# let f x y = x + y * y;;

val f : int -> int -> int = <fun>

Bindings can also be local with the let id = expr1 in expr2 construction.
It allows to use id as a shortcut for expr1 only in expr2.

# let f x y = let square x = x * x in square x + square y;;

val f : int -> int -> int = <fun>

# f 3 4;;

- : int = 25

Note that it is valid and commonly used to shadow bindings (x in this
case): identifiers always refer to the innermost binding.

Recursive functions are defined with the let rec binding:

# let rec fib n = if n < 2 then 1

else (fib (n - 1)) + (fib (n - 2));;

val fib : int -> int = <fun>

# fib 30;;

- : int = 1346269

Note that the if expression does not denote the alternative execution
of two statements, but is just an expression with a value dependent on the
condition; it is equivalent to the ?: operator in C rather than to the if of
that language.

List handling is built-in in Ocaml. Lists are either given as a bracketed list
of semicolon-separated elements, or constructed from other lists by adding
elements in front using the infix :: operator:
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# let l = [6; 17; 23; 39];;

val l : int list = [6; 17; 23; 39]

# 3 :: l;;

- : int list = [3; 6; 17; 23; 39]

The standard Ocaml library provides a List.map function that applies a
given function to each element of a list, and returns the list of the results.

List.map (fun n -> n * 2 + 1) [0; 1; 2; 3; 4];;

- : int list = [1; 3; 5; 7; 9]

Another powerful list manipulation function is folding. It is often used
where imperative languages would utilize loops. For a function f, an initial
value a and a list [b1; ...; bn], the call List.fold_left f a [b1; ...;

bn] returns f (... (f (f a b1) b2) ...) bn:

# List.fold_left (fun s x -> s + x) 0 [1; 2; 3; 4; 5];;

- : int = 15

1.5.2 User-defined Data Structures

Tuples can simply be constructed with commas. Tuple types are denoted
with asterisks (*):

# 3, "green", 2.71;;

- : int * string * float = (3, "green", 2.71)

Like most languages, Ocaml also has record types with named fields,
analogous to C structs:

# type ratio = {num: int; denum: int};;

type ratio = { num : int; denum : int; }

Values of record types are created with curly braces containing assign-
ments of each component:

# {num = 1; denum = 3};;

- : ratio = {num = 1; denum = 3}

# let add_ratio r1 r2 =

{num = r1.num * r2.denum + r2.num * r1.denum;

denum = r1.denum * r2.denum};;

val add_ratio : ratio -> ratio -> ratio = <fun>

# add_ratio {num = 1; denum = 3} {num = 2; denum = 5};;

- : ratio = {num = 11; denum = 15}

Another data structure, the variant record, is useful to represent a set
of cases of a particular type, which makes it especially suitable for recursive
data structures, like binary trees. Cases are delimited with |. Each case has
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a constructor, which starts with a capital letter; optionally, an argument can
be declared after the of keyword. Variant records are constructed simply by
stating the argument after the name of the constructor:

# type misc = Nothing | Int of int | Tuple of int * int;;

type misc = Nothing | Int of int | Tuple of int * int

# Tuple (2, 3);;

- : misc = Tuple (2, 3)

In addition to these features, Ocaml provides exceptions for signaling and
handling exceptional conditions, a powerful module system and support for
imperative or object-oriented style programming.



Chapter 2

Search Tree Algorithms for

Cluster Editing

In this chapter, we will examine the NP -hard Cluster Editing problem
and develop a parameterized search tree algorithm to solve it efficiently.
This will help in establishing the basic mechanisms on which we build our
generalized and automated framework in the following chapters.

2.1 Graph Modification Problems

Graph modification problems [NSS01, Sha02] call for making the least number
of changes to the edge and/or vertex set of an input graph in order to obtain
a graph with a desired property Π. Graph Modification Problems play an
important role in graph theory; the classic work on NP -completeness by
Garey and Johnson from 1979 already mentions 18 different types of vertex
and edge modification problems [GJ79, Section A1.2].

A typical motivation of graph modification problems is analysis of ex-
perimental data, where the modifications of the graphs should compensate
for measuring errors; this will be explained in detail in the following sec-
tion. Another application is modification of graphs to get an instance from
a graph family for which the given problem is easily solvable. For instance,
Leizhen Cai [Cai03] devised a parameterized algorithm that solves Vertex

Coloring efficiently for graphs that are “nearly” split graphs.
Given a graph property Π and a graph G = (V,E), we can define the

following problems:

Definition 2.1. Π-Editing : Find a minimum set F ⊆ V × V such that
G′ = (V,E 4 F ) satisfies Π.

Important variations are Π-Deletion, where only edge deletions are al-
lowed (i.e., F ⊆ E), and Π-Completion, where only edge additions are al-
lowed (i.e., F ∩ E = ∅).
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We also consider the problem of deleting vertices:

Definition 2.2. Π-Vertex Deletion: Find a minimum set W ⊆ V such that
G′ := G \ W satisfies Π.

For many graph properties, these problems are NP -hard [NSS01]. In
particular, it is a well-known result that vertex deletion problems, also known
as maximum induced subgraph problems, are NP -hard for any nontrivial
hereditary property [LY80].

2.2 Clustering

There is a huge variety of clustering algorithms with applications in numerous
fields, e.g. computational biology [HJ97], VLSI design [HK92], and image
processing [WL93]. In general, given are a set of objects and a measure of
similarity between objects. The goal is to partition the objects into disjoint
subsets (clusters), such that similarity within a cluster is high, and similarity
between clusters is low. Many variations of this problem have been studied,
for instance with different definitions of the optimality of a solution, or with
additional constraints like a fixed number of clusters.

Here, we focus on problems closely related to algorithms for clustering
gene expression data obtained with DNA microarrays (cf. [SS02] for a recent
survey). More precisely, Shamir, Sharan and Tsur [SST02] recently studied
three problems called Cluster Editing, Cluster Deletion, and Clus-

ter Completion. These are based on the notion of a similarity graph
whose vertices correspond to data elements and in which there is an edge
between two vertices iff the similarity of their corresponding elements ex-
ceeds a predefined threshold. Finding a clustering now can be modeled as
a graph modification problem where the target graphs are cluster graphs,
which are defined as follows:

Definition 2.3. A cluster graph is a graph in which each of the connected
components is a clique.

Thus, we arrive at the following graph modification problem (formulated
as decision problem):

Definition 2.4. Cluster Editing : Given a graph G = (V,E) and a non-
negative integer k. Can we transform G, by deleting and adding at most k
edges, into a graph that consists of a disjoint union of cliques (a clustering
solution)?

An important advantage of this and related formulations for clustering
problems is that one does not need to specify the number of clusters, nor a
distance threshold in advance; these parameters will be implicitly chosen by
the problem definition to be optimal.
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2.2.1 Previous Results

The first proof of the NP -completeness of Cluster Editing can be ex-
tracted from a paper by Křivánek and Morávek [KM86]. They prove the
NP -completeness of the Hierarchical-Tree Clustering problem via
the special case with binary weights and tree height 3 (bHIC3). This special
case is equivalent to Cluster Editing. The NP -completeness of Cluster

Deletion was proven by Natanzon [Nat99].

Shamir et al. [SST02] give, among other things, another proof that Clus-

ter Editing is NP -complete and then show that there exists some constant
ε > 0 such that it is NP -hard to approximate Cluster Deletion to within
a factor of 1 + ε (i.e., Cluster Deletion is APX -hard). Cluster Com-

pletion is easily solvable in polynomial time by completing connected com-
ponents of the given graph.

In addition, Shamir et al. study cases where the number of clusters (i.e.,
cliques) is fixed. Before that, Ben-Dor, Shamir and Yakhini [BDSY99] and
Sharan and Shamir [SS00] investigated closely related clustering applica-
tions in the computational biology context, where they deal with somewhat
modified versions of the Cluster Editing problem together with heuristic
polynomial-time solutions.

Independently from Shamir et al., Bansal, Blum, and Chawla [BBC02]
study Cluster Editing motivated by document clustering problems from
machine learning. The basic problem is Correlation Clustering: Given
a graph with real edge weights, partition the vertices into clusters to mini-
mize the total absolute weight of cut positive edges and uncut negative edges.
They consider the special case of a complete graph with each edge labeled
with either +1 or −1, which is equivalent to Cluster Editing. They give
another proof that Cluster Editing is NP -complete. The main focus is
on approximation; they give a constant-factor approximation for minimizing
disagreement (equivalent to the number of edit operations, as considered by
Shamir et al. for Cluster Deletion), and a PTAS1 for maximizing agree-
ment (equivalent to the number of non-edited edges). The approximation
for minimizing disagreement was improved to a factor-4 approximation by
Charikar, Guruswami and Wirth [CGW03], who also show that Cluster

Editing is APX -hard with this objective.

From the more abstract view of graph modification problems, Leizhen
Cai [Cai96] (also cf. [DF99]) considered the more general graph modification
problem that allows edge deletions, edge additions, and vertex deletions. He
showed that if the graph property is hereditary and can be characterized with
a finite set of forbidden induced subgraphs, the problem is fixed-parameter

1Polynomial time approximation scheme, i.e., a scheme which, for any fixed ε, yields
a polynomial time approximation within a (1 + ε) factor. Running time may depend
exponentially (or worse) on 1/ε, though, making the resulting algorithms often impractical
for small ε.



20 2. Search Tree Algorithms for Cluster Editing

tractable. This result can be applied to Cluster Editing and Cluster

Deletion with {P3} as the forbidden set, and implies an O(3k · |G|4) time
algorithm for both Cluster Editing and Cluster Deletion. However,
the resulting algorithms do not seem very suitable for practical implementa-
tions.

Kaplan, Shamir, and Tarjan [KST99] and Mahajan and Raman [MR99]
also considered special cases of edge modification problems with particular
emphasis on fixed-parameter tractability results.

2.2.2 A Parameterized Algorithm for Cluster Editing

We will first show some simple properties of cluster graphs and the Cluster

Editing problem, and then present a very simple parameterized algorithm
to solve Cluster Editing based on these observations.

It is easy to observe that in Cluster Editing for a graph G, it is never
useful to connect two connected components. Therefore, if G has more than
one connected component, we can solve the problem independently on each
connected component. This allows us in the following to assume that the
input graph is connected.

Note further that it is possible to build a database which contains optimal
solutions for all small graphs. Therefore, an algorithm can assume that every
input instance has at least c vertices, for a constant c.

The following characterization of cluster graphs is useful, since it allows
deductions from only looking at small subgraphs:

Lemma 2.1. [SST02] A graph is a cluster graph iff it contains no P3, i.e.,
a path of three vertices, as induced subgraph.2

In other words, cluster graphs can be characterized by the forbidden set
{P3}. Lemma 2.1 immediately leads to the following search tree algorithm,
as illustrated in Fig. 2.1:

Algorithm 2.1. Input: Graph G, parameter k

• If G already is a cluster graph, we are done: report the solution and
return.

• Otherwise, if k ≤ 0, then we cannot find a solution in this branch of
the search tree: return.

• Otherwise, find an induced P3, i.e., three vertices u, v, w ∈ V such that
{u, v} ∈ E and {u,w} ∈ E, but {v, w} /∈ E (they exist with Lemma 2.1;
we call this a conflict triple). Recursively call the branching procedure
on the following three instances consisting of graphs G′ = (V,E′) with
nonnegative integer k′ as specified below:

2Note that Shamir et al. [SST02] write “P2” for a path with three vertices, whereas we
keep the notation commonly used in graph theory literature.
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Figure 2.1: Simple branching for Cluster Editing

1© E′ := E − {u, v} and k′ := k − 1.

2© E′ := E − {u,w} and k′ := k − 1.

3© E′ := E + {v, w} and k′ := k − 1.

This leads us to the following theorem:

Theorem 2.1. Cluster Editing can be solved in O(3k · |E|) time.

Proof. The correctness of Algorithm 2.1 is obvious. Regarding running time,
we note that the height of the search tree is bounded by k, since the parame-
ter gets decreased by 1 in each layer. Since each internal node has 3 children,
the search tree has 3k leaves and O(3k) nodes.

In each node, we can in O(|E|) time distinguish two cases by checking
every edge:

• There is an an edge connecting two vertices u and v of unequal degrees
with deg(u) > deg(v). Then, clearly at least one neighbor w of u is not
connected to v, and the three vertices u, v and w form a P3. Finding
such a neighbor takes O(|E|) time.

• Otherwise, the graph consists of connected components where all ver-
tices in a connected component have the same degree. Choose any
vertex u from a connected component that is not already a clique. Not
all neighbors of u can be pairwise connected by an edge, because oth-
erwise u and its neighbors would form a connected component that
is a clique. Therefore, two neighbors v and w of u exist that are not
connected by an edge, and u, v and w form a P3. If we check all pairs
of neighbors of u, we will clearly have to examine less than |E| pairs
before finding one that is not connected by an edge.

In summary, we need O(|E|) time per search tree node.

Algorithm 2.1 can be improved in two ways:
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• Reduce the overhead per node of the search tree;

• Prune the search tree with a more refined case distinction.

Both ways have been explored in previous works [GGHN03b]. In the
remaining sections of this chapter, we will recapitulate the results and add
a few remarks.

2.3 Annotations and Reductions

It turns out to be useful to consider an annotated version of Cluster Edit-

ing, where the input graph has additional properties: each unordered pair of
vertices {u, v} can be marked as immutable. The meaning of this annotation
depends on whether the graph contains the edge {u, v}:

• If {u, v} ∈ E and {u, v} is immutable, then the edge {u, v} is called
permanent. The algorithm then has to assume this edge will be part
of any clustering solution, and must not delete it. With marking per-
manent, we denote the process of setting the immutable attribute for
{u, v}, and adding {u, v} to E if it is not already there, decreasing the
parameter k by one in that case.

• If {u, v} /∈ E and {u, v} is immutable, then {u, v} is called forbidden.
The algorithm then has to assume the edge {u, v} will not be part of
any clustering solution, and must not add it. With marking forbidden,
we denote the process of setting the immutable attribute for {u, v},
and deleting {u, v} from E if it is present, decreasing the parameter k
by one in that case.

This annotation is already advantageous for the simple 3k search tree:
at each branch, the modified edge can be marked immutable, since changing
it again cannot lead to an optimal solution. Therefore, in the following, we
will assume that the considered Cluster Editing instances are annotated,
and that whenever edges are added or deleted, the immutable attribute is
set for them.

The technique of introducing annotations to capture additional informa-
tion acquired within the run of a search tree algorithm is well-known. For
example, a search tree algorithm for the Planar Dominating Set prob-
lem annotates vertices as “white”, meaning they are already dominated by
another vertex [AFF+01].

The annotations have the additional benefit of giving rise to the following
reduction rules, as illustrated by Fig. 2.2:

Rule 1. If there are three pairwise distinct vertices u, v, w in V with {u, v}
permanent and {v, w} permanent, then we can mark {u,w} permanent.
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Figure 2.2: Reduction rules for Cluster Editing. Dotted lines denote
forbidden vertex pairs, bold lines denote permanent edges

Rule 2. If there are three pairwise distinct vertices u, v, w in V with {u, v}
permanent and {v, w} forbidden, then we can mark {u,w} forbidden.

Proof. The correctness of these rules is easy to see.

2.4 Problem Kernel for Cluster Editing

For parameterized problems, it is often possible to reduce a problem instance
I to an “equivalent” smaller instance I ′ by applying reduction rules. A reduc-
tion rule replaces, in polynomial time, a given Cluster Editing instance
(G, k) consisting of a graph G and a nonnegative integer k by a “simpler”
instance (G′, k′) with k′ ≤ k such that (G, k) has a solution iff (G′, k′) has a
solution, i.e., G can be transformed into disjoint clusters by deleting/adding
at most k edges iff G′ can be transformed into disjoint clusters by delet-
ing/adding at most k′ edges. An instance to which none of a given set of
reduction rules applies is called reduced with respect to these rules.

By repeated application of reduction rules, for some problems it is possi-
ble to create an instance whose size is bounded by a function of the parame-
ter k, independent of the original input size. When additionally interleaving
search tree branching and reductions [NR00a], this makes the problem-size
dependent factor in the f(k) term go away, to be replaced with an additive
term for the preprocessing. This is called reduction to a problem kernel.

We will now sketch the general scheme of a problem kernel reduction for
Cluster Editing.

Rule 1 For every pair of vertices u, v ∈ V :

• If u and v have more than k common neighbors, i.e., |{N(u) ∩
N(v)}| > k, then the edge {u, v} needs to belong to any clustering
solution. We mark {u, v} as permanent.

• If u and v have more than k non-common neighbors, i.e., |{N(u)4
N(v)}| > k, then the edge {u, v} cannot be part of a clustering
solution. We mark {u, v} as forbidden.
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• If u and v have both more than k common and more than k
non-common neighbors, then the given instance has no solution.

Rule 2 Apply the reduction rules from Sect. 2.3.

Rule 3 Delete the connected components which are cliques from the graph.

Applying these rules leads to the following theorem:

Theorem 2.2. Cluster Editing has a problem kernel which contains at
most 2(k2+k) vertices and at most 2

(

k+1
2

)

k edges. It can be found in O(|V |3)
time.

Proof. Because of Rule 3, none of the remaining connected components can
be a clique. Therefore, there can be at most k connected components, since
each connected component requires at least one editing operation. With
Rule 1, it can be shown that for each connected component, the number of
vertices is limited by 2(k+1) ·ki and the number of edges by 2

(

k+1
2

)

ki, where
ki is the number of editing operation alloted to the i-th component. Since
∑

i ki = k, the theorem is proven.

We refer to [GGHN03b] for the details of the proof and an analysis of
the run time of the reduction rules.

Together with the simple search tree algorithm, we arrive at the following
theorem:

Theorem 2.3. Cluster Editing can be solved in O(3k + |V |3) time.

2.5 Refined Search Tree for Cluster Editing

The branching strategy from Sect. 2.2.2 can be improved as described in the
following. We still identify a conflict triple of vertices, i.e., u, v, w ∈ V with
{u, v} ∈ E, {u,w} ∈ E, but {v, w} /∈ E. Based on a case distinction, we pro-
vide for every possible situation additional branching steps. The amortized
analysis of the successive branching steps, then, yields the better worst-case
bound on the running time.

We start with distinguishing three main situations that may apply when
considering the conflict triple:

(C1) Vertices v and w do not share a common neighbor, i.e., @x ∈ V, x 6=
u : {v, x} ∈ E and {w, x} ∈ E.

(C2) Vertices v and w have a common neighbor x and {u, x} ∈ E.

(C3) Vertices v and w have a common neighbor x and {u, x} /∈ E.

Regarding case (C1), we show in the following lemma that, here, a
branching into two cases suffices.
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Lemma 2.2. Given a graph G = (V,E), a nonnegative integer k and
u, v, w ∈ V with {u, v} ∈ E, {u,w} ∈ E, but {v, w} /∈ E. If v and w
do not share a common neighbor, then the branching case of adding the edge
{v, w} cannot yield a better solution than both the cases of deleting {u, v} or
{u,w}. Therefore, it can be omitted in the branching.

Proof. Consider a clustering solution G′ for G where we did add {v, w}
(see Fig. 2.3). We use NG∩G′(v) to denote the set of vertices which are
neighbors of v in both G and in G′. Without loss of generality, assume
that |NG∩G′(w)| ≤ |NG∩G′(v)|. We then construct a new graph G′′ from G′

by deleting all edges adjacent to w. It is clear that G′′ is also a clustering
solution for G. We compare the cost of the transformation G → G′′ to that
of the transformation G → G′:

• −1 for not adding {v, w},

• +1 for deleting {u,w},

• −|NG∩G′(v)| for not adding all edges {w, x}, x ∈ NG∩G′(v),

• +|NG∩G′(w)| for deleting all edges {w, x}, x ∈ NG∩G′(w).

Herein, we omitted possible vertices which are neighbors of w in G′ but
not neighbors of w in G because they would only increase the cost of trans-
formation G → G′.

In summary, the cost of G → G′′ is not higher than the cost of G → G′,
i.e., we do not need more edge additions and deletions to obtain G′′ from G
than to obtain G′ from G.



26 2. Search Tree Algorithms for Cluster Editing

PSfrag replacements

u

uu u u

uu

u

v

vv v v

vv

v

w

ww w w

ww

w

x

xx x x

xx

x

−1

−2−2 −3−3

1©

2© 3© 4©

5© 6© 7© 8©

9©

Figure 2.4: Branching for case (C2). Bold lines denote permanent, dashed
lines forbidden edges

Lemma 2.2 shows that in case (C1) a branching into two cases is sufficient,
namely to recursively consider graphs G1 = (V,E−{u, v}) and G2 = (V,E−
{u,w}), each time decreasing the parameter value by one.

For case (C2), we change the order of the basic branching. In the first
branch, we add edge {v, w}. In the second and third branches, we delete
edges {u, v} and {u,w}, as illustrated by Fig. 2.4.

• Add {v, w} as labeled by 2© in Fig. 2.4. The cost of this branch is 1.

• Mark {v, w} as forbidden and delete {u, v}, as labeled by 3©. This
creates the new conflict triple (x, u, v). To resolve this conflict, we
make a second branching. Since adding {u, v} is forbidden, there are
only two branches to consider:

– Delete {v, x}, as labeled by 5©. The cost is 2.

– Mark {v, x} as permanent and delete {u, x}. With reduction
rule 2 from Sect. 2.3, we then delete {x,w}, too, as labeled by 6©.
The cost is 3.

• Mark {v, w} as forbidden and delete {u,w} ( 4©). This case is symmet-
ric to the previous one, so we have two branches with costs 2 and 3,
respectively.

In summary, the branching vector for case (C2) is (1, 23, 2, 3).

For case (C3), we perform a branching as illustrated by Fig. 2.5:

• Delete {u, v}, as labeled by 2©. The cost of this branch is 1.
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Figure 2.5: Branching for case (C3)

• Mark {u, v} as permanent and delete {u,w}, as labeled by 3©. With
Rule 2, we can additionally mark {v, w} as forbidden. We then identify
a new conflict triple (v, u, x.) Not being allowed to delete {v, u}, we
can make a 2-branching to resolve the conflict:

– Delete {v, x}, as labeled by 5©. The cost is 2.

– Mark {v, x} as permanent. This implies {x, u} needs to be added
and {x,w} to be deleted, as labeled by 6©. The cost is 3.

• Mark {u, v} and {u,w} as permanent and add {v, w}, as labeled by 4©.
Vertices (w, u, x) form a conflict triple. To solve this conflict without
deleting {w, u}, we make a 2-branching:

– Delete {w, x} as labeled by 7©. We then also need to delete {x, v}.
The cost is 3. Additionally, we can mark {x, u} as forbidden.

– Add {u, x}, as labeled by 8©. The cost is 2. Additionally, we can
mark {x, u} and {x, v} as permanent.

It follows that the branching vector for case (C3) is (1, 2, 3, 3, 2).

In summary, this leads to a refinement of the branching with a worst-case
branching vector of (1, 2, 2, 3, 3), yielding the branching number 2.27. Since
the recursive algorithm stops whenever the parameter value has reached 0 or
below, we obtain a search tree size of O(2.27k). This results in the following
theorem:

Theorem 2.4. Cluster Editing can be solved in O(2.27k + |V |3) time.
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2.6 Heuristic Improvements

The following rules do not affect the worst-case time complexity, since there
is no guarantee that any of them ever applies; however, they might be useful
for practical implementation, since they are fairly cheap and can help reduce
the size of the search tree substantially if they do apply.

Reduction Rules

In some cases, no branching is needed, and an instance G with parameter k
can be directly replaced with a simplified instance G′ with parameter k′. The
correctness of the following rules can be easily seen with the above branching
rules and symmetry arguments.

Let u, v, w, x, y be distinct vertices.

• If deg(u) = deg(v) = 1 and N(u) = N(v) = {w}, then delete {u,w}
and set k′ := k − 1.

• If deg(u) = 1,deg(v) = 2, N(u) = {v} and N(v) = {u,w}, then
delete {v, w} and set k′ := k − 1.

• If deg(u) = 2,deg(v) = deg(w) = 3 and N(u) = {v, w}, N(v) =
{u,w, x}, N(w) = {u, v, y}, then delete {v, x} and {w, y} and set k′ :=
k − 2.

Branching Rules

For some local substructures, special branchings can be identified that have
noticeably better branching vectors than the “normal” branching. Therefore,
it is beneficial to execute these branchings if possible and only fall back to
the general search tree when they are no longer applicable.

• If {u, v} ∈ E and u and v do not have a common neighbor, branch into
two cases: either delete {u, v}, or delete all edges adjacent to u or v
except {u, v}. This rule is proven and utilized further in Sect. 4.1.

Bail-Out Rules

Some branches in the search tree need not be followed, since either they
cannot lead to a solution, or because it is known that for any solution they
might lead to, we find another solution which is at least as good in another
branch.

• Let G0 be the original input graph and let G be the graph in the
current state of the algorithm. If G contains a vertex v with degG(v) ≥
2 degG0

(v) then the current branch of the search tree can be omitted,
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since we can be certain to find an optimal solution in another branch
of the search tree. This rule is correct as can be seen as follows: for any
possible clustering solution G′ of G, we can construct another clustering
solution G′′ by removing all edges adjacent to v in G′. Clearly, the cost
of transforming G0 to G′′ is not higher than the cost of transforming G0

to G′.





Chapter 3

Automated Discovery of

Branching Rules

The branching algorithm given in the previous chapter for Cluster Edit-

ing follows the following basic scheme:

(1) Find a subgraph induced by three vertices that is a P3, i.e., a conflict
triple.

(2) Extend the subgraph according to given rules by adding vertices from
its neighborhood.

(3) Look up a branching rule for the resulting subgraph in a dictionary
containing an entry for every possible subgraph, and branch into the
cases determined by this branching rule.

This recursive procedure realizes the following very general search tree
algorithm scheme, which requires the possibility to consider only a “small
part” of the input, a window, and draw conclusions about the solution from
this window. We can sketch this scheme as follows.

General search tree algorithm scheme.

(1) Find an initial window in the input.

(2) Expand the window according to a given expansion rule, usually by
adding information that is “local”.

(3) Look up a branching rule for the resulting window and branch into
the cases determined by the rule. This requires a dictionary contain-
ing branching rules for all windows which might be produced in step (2).
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To ensure termination and make complexity analysis possible, each case
of a branching rule must decrement a problem parameter k, which can ei-
ther be a parameter in the sense of parameterized complexity (Sect. 1.3.2),
or simply the problem size. For a window, the amount the parameter is
decreased compared to to the initial input is referred to as the cost.

Trying to define the terms “window” and “expand locally” rigorously, one
would most likely end up with concepts too general for practical usefulness;
therefore, we will only illustrate them with a few examples:

• For graph modification problems, an obvious (and well-tried) choice
for windows is induced subgraphs. Expanding locally means adding
vertices adjacent to the subgraph.

• For satisfiability problems, the window could be a small set of clauses.
It could be expanded e.g. by adding a clause that contains a variable
which is already considered.

• For job scheduling on a single machine with precedence constraints, a
window could be a subset of the jobs. Expanding it means adding jobs
with certain relations to jobs already considered.

While the examples suggest a wide applicability of the scheme, there
are problems where it is not obvious how it could be applied, for example
Hamiltonian Cycle (given a graph of n vertices, decide whether it con-
tains a spanning cycle): a small induced subgraph of the input does not seem
to allow any conclusions about a possible solution, for example whether a
particular edge is part of the spanning cycle.

The performance of an algorithm that follows this scheme depends on the
worst case of the branching numbers of the stored branching rules in step (3),
since, for a worst-case analysis, one has to assume that the expansion in
step (2) always yields the most adversarial window. Therefore, there are two
key points in finding an efficient search tree algorithm:

• The choice of expansion rules employed in step (2) of the general search
tree scheme. The goal is to find an expansion rule where the set of pos-
sible expanded window when considering all possible inputs is advan-
tageous. Presumably, the larger this set is, the better, since then each
element gives more information to its branching rule. This is going to
be the topic of Chap. 4.

• Find a good branching rule for a given window, i.e., to build the branch-
ing rule dictionary used in step (3) of the general search tree scheme.
In this chapter, we will develop a method for this which can even be
considered optimal under certain criteria.

We will first present an initial automated approach for finding good al-
gorithms following this scheme for Cluster Editing, and then formalize
and generalize the method.
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3.1 Simplified Branching for Cluster Editing

To ease automation, we start by simplifying and systematizing the elements
of the “manually” found algorithm presented in Sect. 2.5.

Firstly, let us consider the case enumeration part. In the manually found
algorithm, we gave a branching rule only for two graphs of size 4; the others
were “discussed away” by arguing that they cannot occur in instances reduced
with respect to a certain preprocessing (Lemma 2.2). For the automation
approach, we simply consider all possible graphs resulting from adding an
arbitrary vertex to the conflict triple, i.e., all size-4 graphs containing a P3.

Secondly, we consider the branching rules for each case. Looking at
Fig. 2.4, we see that we arrived at the final cases of the branching rule by a
hierarchical case distinction, which we call a branching tree. The root of a
branching tree is the window for which it defines a branching rule, and each
leaf marks a branching case. The step from an internal node to its children is
called a sub-branching ; for example, the first sub-branching into three cases
in Fig. 2.4 is based on the trivial 3-branching on a conflict triple.

The technique of sub-branching seems appropriate for automation, since
one only needs to prove correctness of the sub-branching rules to show the
correctness of a branching rule. All branching rules we are going to consider
with our automated framework are based on a branching tree, therefore we
will use the two terms mostly interchangeably.

In the manually found algorithm, within both branching rules (Fig. 2.4
and 2.5), we used complicated reasoning to justify the completeness of the
sub-branchings. For automation purposes, we need to find simpler and more
general rules.

It turns out that for Cluster Editing, one can already get branching
rules as good as those of Sect. 2.5 (case (C2) and (C3)) based on only two
principles for the sub-branchings:

• A single kind of sub-branching: For a pair of vertices u and v for
which {u, v} is not annotated as immutable yet, branch into two cases,
one where {u, v} is marked permanent, and one where {u, v} is marked
forbidden. The completeness of this case distinction is obvious.

• The application of the reduction rules from Sect. 2.3.

Figure 3.1 shows a branching rule for an exemplary size-4 graph based
on this scheme, which was generated automatically by our framework. It has
the same branching vector as the carefully hand-crafted rule for this graph
in Fig. 2.4. In fact, one can see a close correspondence between them; the
initial sub-branching into three cases in Fig. 2.4 is expressed in the simplified
branching of Fig. 3.1 by introducing an extra intermediary node.

The branching trees we are looking for are already completely defined by
giving its structure as a binary tree, and stating in each node which edge to
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Figure 3.1: Branching tree for a Cluster Editing window using only sub-
branching on vertex pairs (double circles), and applications of the reduction
rules (asterisks). The numbers next to the windows state the change of the
problem parameter k
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from Fig. 3.1
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Figure 3.3: Sketch of the optimal branching rules for the 5 windows of size 4
containing a P3, along with their branching vectors and branching numbers

Size Graphs Trees

4 5 720
5 20 3.628.800
6 111 1.307.674.368.000

Table 3.1: Number of non-isomorphic size-n graphs containing a P3, and
number of possible branching trees for each case (rough estimate)

branch on. Figure 3.2 shows this abstracted view of the branching tree from
Fig. 3.1.

Clearly there is only a finite amount of such branching rules; we can
try them all and choose the one with the best resulting branching vector.
Figure 3.3 sketches the optimal branching rules for each of the 5 possible
graphs that can be generated by extending the P3 by one vertex. The worst
cases are cases 2© and 3© with a branching number of 2.42 each.

Comparing this to the manually designed algorithm, we note that for
the two graphs for which we manually determined a branching, the auto-
mated method finds very similar branchings with identical branching vec-
tors. However, since the automated analysis considers more cases, namely
all size-4 graphs containing a P3, the resulting search tree still has a worse
time complexity.

Therefore, the next step is obviously to utilize the brute force of the
machine and examine all cases where two, or even more vertices are added
to the conflict triple. Unfortunately, this implies a very steep increase in
computational cost, since (a) there are more cases to distinguish, and (b)
more branching trees to try for each case, as illustrated by Table 3.1. We will
estimate the number of branching trees only very roughly. We simply give the
number of complete binary trees uniquely labeled with vertex pairs for size-
n graphs: ((n · (n − 1))/2)!. Thereby, we ignore both that truncated trees
are also allowed (which increases the actual number of possible branching
trees), and that many labellings must be dismissed because one can only
branch on edges that have not been marked as immutable by the reduction
rules (which decreases the number of possible branching trees). Because of
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the application of reduction rules, the actual number of branching trees also
depends on the window considered.

The figures indicate that it is not feasible to simply enumerate all possible
branching rules for an instance; the space of branching rules needs to be
searched with a more sophisticated method, which will be presented in the
following section.

3.2 Finding Optimal Branching Rules

We will now give an algorithm that, given an expanded window from step (2)
of the general algorithm scheme presented in the previous section, finds an
optimal branching rule for step (3), i.e., one which has the lowest branch-
ing number of all branching rules based on this scheme. For this, we need
several problem-specific data structures and functions, which are first given
in a general way and will then be made more concrete with the example of
Cluster Editing:

1. A way to represent a window of the input.

2. A function that yields for a window the set of possible branching ob-
jects. Branching objects mark each node in the sub-branching repre-
sentation of a branching rule, i.e., the branching tree.

3. A function which yields for a window and a branching object a set of
new windows.

For Cluster Editing, we made the following choices:

1. A window is an induced subgraph (with annotations).

2. Branching objects are vertex pairs (see Fig. 3.2). A vertex pair is only
a legal branching object if it is not marked immutable.

3. The set of cases in a sub-branching always consists of two graphs,
with the vertex pair marked permanent in the first one, and marked
forbidden in the second one. Both graphs will additionally be reduced
according to the reduction rules from Sect. 2.3.

To make the explanations more understandable, we will use the termi-
nology of Cluster Editing, but the algorithm is trivially generalizable to
other problems.

To compute a search tree branching rule, we, again, use a search tree to
explore the space of possible branching rules. This search tree is referred to
as meta search tree.

An obvious approach to explore the search space is Divide&Conquer. For
each vertex pair {u, v}, we consider all branching rules that branch on this
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Figure 3.4: Fragment of a meta search tree which shows that passing only
the optimal branching vectors does not suffice

pair as first sub-branching. We mark this pair permanent and recursively
calculate an optimal branching rule for this instance; likewise for the graph
with {u, v} marked forbidden. Then we can generate the branching tree by
joining the two returned optimal branching trees with a node that denotes
a branch on {u, v}. Finally, determine the best vertex pair to branch on
initially by comparing all branching vectors.

Unfortunately, it turns out that this method does not yield optimal
branching rules; this is because of the counter-intuitive fact that joining
two optimal branching trees does not necessarily yield an optimal branch-
ing tree. Figure 3.4 illustrates this with an example. Suppose the search
in the left branch of the meta search tree returns two branching trees, one
branching into two cases with k reduced by 1 and 2, and the other branching
into three cases with k reduced by 1, 3, and 3. The branching vector (1, 2)
has a better branching number, so all other search trees would be discarded
(in this case only one). On the right part of the meta search tree, also two
search trees are found, the better one having the branching vector (1, 2, 5).
Joining the two optimal search trees produces a branching tree with branch-
ing vector (1, 2, 1, 2, 5) and branching number 2.75. However, this is not the
best possible branching; in fact, joining the worst cases of both sub-problems
leads to the optimal branching vector of (1, 3, 3, 2, 2, 2) with a considerably
better branching number of 2.52.
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Therefore, at each node of the meta search tree, a whole set of search
trees has to be returned. Only at the root of the meta search tree, we
can then compare their branching numbers and select an optimal one. It
is obvious that there is a combinatorial explosion in the size of the search
tree sets; indeed, for the practical implementation, this turned out to be a
major computational bottleneck. We conceive that eventually one will have
to employ heuristics here to make the search feasible for larger problems.

3.2.1 Algorithm Description

We will now define our meta search tree procedure more formally. Our
central reference point in this section is the function find_branching given
in Fig. 3.5.

We use several data types:

Window: A window represents the current subgraph including annotations.
Also stored is the number of modifications already applied to the input
window (cost).

Branch_obj: A branching object (vertex pair in the case of Cluster Edit-

ing).

Problem: A structure containing two methods: branching_objs, which re-
turns a list of all possible branching objects for a window; and branches,
which returns a pair of windows with the possible branching cases of
the branching object (for Cluster Editing, the graph with the ver-
tex pair marked permanent or forbidden, respectively).1

Btree_set: A set of branching trees, each represented as binary tree where
internal nodes are labeled with branching objects (see Fig. 3.2). Leaves
contain the cost of the corresponding window. Provided are methods
to create and merge such sets.

The function find_branching takes two parameters: a window window

and a problem structure problem that provides the problem-specific func-
tions mentioned at the beginning of Sect. 3.2: identifying branching objects
(problem.branching_objs), and applying sub-branching to a window given
a branching object to yield new windows (problem.branches).

The result of find_branching is a set of branching trees. It is guaran-
teed that among the returned branching trees, there is an optimal one, since
(in the unrefined algorithm) it contains all possible branching trees. There-
fore, one can get an optimal branching tree for a window by passing it to
find_branching and selecting the branching tree with the lowest branching
number from the resulting set.

1Other problems can have more than two branching cases, or a variable number of
cases; taking this into account is straightforward, but omitted here for clarity.
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let find_branching problem window =
List.fold (* 2 *)

(fun btree_set branch_obj →
let win1, win2 = problem.branches window branch_obj in (* 5 *)
let btree_set1 = find_branching problem win1 in (* 6 *)
let btree_set2 = find_branching problem win2 (* 6 *)
in

Btree_set.add (* 8 *)
btree_set
(Btree_set.merge btree_set1 btree_set2 branch_obj)) (* 7 *)

(if Window.cost window = 0 (* 4 *)
then Btree_set.empty
else Btree_set.make (Window.cost window)) (* 3 *)

(problem.branching_objs window) (* 1 *)

Figure 3.5: Pseudo-Code for the meta search tree

Note that a branching vector must not contain a zero, since that corre-
sponds to a branching tree which contains a leaf where the parameter is not
decreased at all; this would represent a non-terminating search tree. There-
fore, to get a useful result, one has to ensure that there is at least one valid
search tree in the space defined by the problem and the employed way of
sub-branching. The easiest way to do this is to have a branching function
which only returns windows with decreased parameter. The branching func-
tion we chose for Cluster Editing does not have this property; only one
of the two branches will decrease the parameter. It is easy to see, however,
that if the input contains a P3, the application of the reduction rules will
lead to at least one valid search tree.

The process flow of find_branching is as follows (see Fig. 3.5):

The problem-specific function problem.branching_objs is called to gen-
erate a list of possible branching objects (1). For Cluster Editing, it
contains a list of all vertex pairs that are not marked immutable. This list
is folded (2) to get the resulting search tree set. The starting point is a
one-element set containing a search tree that consists only of a leaf, repre-
senting no further branching (3). As explained in the previous paragraph,
this is only a legal option if the parameter has already been decreased for
this window (4). For each branching object, the two modified windows are
retrieved (5), and a set of branching trees is calculated recursively for each
of them (6). From the resulting sets, each possible joining is generated, with
the current branching object as root (7) and added to the existing set (8).

Correctness. The algorithm returns all possible branching trees for the
input window; therefore, it will also contain an optimal one.
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3.3 Optimizations

It is clear that the joining of branching trees in each meta search tree node
leads to a combinatorial explosion in the size of the branching tree sets; this
is already the case with Cluster Editing, where only two sets are merged,
but it gets even worse when there are more than two branching cases in a
sub-branching to consider.

We will present two techniques to speed up the meta search tree proce-
dure.

Transposition tables. Within the search space of the meta search tree, we
often encounter transpositions, i.e., identical subproblems reached by distinct
paths. For example, with Cluster Editing, the meta search tree will
try to branch on vertex pair {a, b} first and then on vertex pair {c, d} for
four distinct vertices a, b, c, d. Then, at a later stage, it will also examine
branching trees that branch on {c, d} first and then on {a, b}. This obviously
leads to identical graphs, and a potentially very large search space will be re-
searched. This problem is well known from state space search; the simplest
technique to mitigate it is to employ a transposition table, which is a simple
associative data structure that stores for each encountered subproblem the
result.

While transposition tables are conceptually simple and can avoid all
transpositions, their application is often not feasible due to excessive mem-
ory requirements. In our test cases, however, we could manage to keep all
occurring subproblems in memory, and, thus, did not have to revert to more
sophisticated transposition avoidance schemes. This might be different when
applying the meta search tree to other problems.

Pruning branching tree sets. As elaborated in Sect. 3.2, one cannot
remove a branching tree from a set of branching trees simply because it
has a worse branching vector than another one from the same set, since
joining with other branching trees can change this. However, the following
observation allows to at least remove some of the branching trees.

Consider a branching vector as a multi-set, i.e., identical elements may
occur several times but the order of the elements plays no role. Then, com-
paring two branching vectors b1 and b2, we say that b2 is subsumed by b1 if
there is an injective mapping f of elements from b1 onto elements from b2

such that for every x ∈ b1 it holds that x ≥ f(x). Then, if one branching
vector is subsumed by another one from the same set, the subsumed one can
be discarded from further consideration because the other one always leads
to better solution no matter what we concatenate to it.

Unfortunately, for branching vectors which are incomparable with respect
to subsumption we do not see a useful simplification rule. Thus, we have to
compare all remaining pairs of branching vectors. Since the corresponding
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n Cases Search tree Time

4 5 O(2.42k) 0.01 sec
5 20 O(2.27k) 2 sec
6 111 O(2.16k) 9 days

Table 3.2: Results for Cluster Editing from extending a P3 up to a size-n
graph and finding an optimal branching rule for each resulting case

characteristic polynomials strongly “oscillate”, we consider any result to im-
prove this as a challenging task. It is conceivable, however, that heuristics
for selecting concatenation candidates might work well.

3.4 Results for Cluster Editing

With the optimizations mentioned in the previous chapter, our framework is
able to not only find branching rules for graphs of size 4, but also of size 5
and 6, while still finding optimal solutions. Table 3.2 shows the worst case
sizes of the resulting search trees. Already when considering size-5 graphs,
the complexity matches that of the elaborated “manually” found algorithm
from Theorem 2.4; when examining size-6 graphs, one gets a considerable
improvement. The running time to find these optimal branching rules, how-
ever, is considerable; most of it is not due to the increased number of nodes
in the meta search tree, but due to the increased size of branching tree sets
to be merged in each node.

3.5 Generalization for Other Graph Modification

Problems

We will now demonstrate how one can apply the algorithm for finding branch-
ing trees to any graph modification problem where the target property can be
characterized by a finite set of forbidden induced subgraphs; we will call this
class of problems GMP-FS. This class covers many well known and impor-
tant graph classes (see [BLS99, Sect. 7.1] for a survey). We will sometimes
call the forbidden induced subgraphs conflict graphs.

First, we introduce an “immutable” annotation as described in Sect. 2.3.
As with Cluster Editing, we will from now on only consider the annotated
problem version.

Then, for each forbidden subgraph F = (VF , EF ), devise reduction rules
as follows:

If a subset of the vertices of the current windows induces either F or
(VF , EF 4 {{u, v}}) (i.e., F with one vertex pair {u, v} toggled), and all
pairs of these vertices except {u, v} are marked immutable, then we can
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Graph Class Forbidden set

Cluster graphs {P3}
Triangle-free graphs {C3}
Unit interval graphs {K1,3}
Cographs {P4}
Trivially perfect graphs {P4, C4}
Split graphs {2K2, C4, C5}

Table 3.3: Some graph classes with a characterization by a set of forbidden
induced subgraphs
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Figure 3.6: The trivial 6k-branching for Claw Editing, as discovered by
our framework

• mark {u, v} forbidden if {u, v} ∈ EF ;

• or mark {u, v} permanent if {u, v} /∈ EF .

It is easy to see that instantiating this rule for Cluster Editing will
result in the reduction rules from Sect. 2.3.

As with Cluster Editing, the sub-branchings always branch into two
cases, marking a vertex pair permanent or forbidden, respectively.

The modifications needed to also cover edge deletion and vertex deletion
problems are straightforward.

Conceivably, it would not be very hard to extend our framework to handle
GMP-FS problems fully automatically in the sense that only the set of
forbidden subgraphs needs to be given (see also Sect. 6.4 for more information
on what is needed to add a problem to our framework).

The finite forbidden subset characterization covers a large class of graph
modification problems, some of which are enumerated in Table 3.3. For all
of them, a simple search tree algorithm can be given, analogous to that of
Algorithm 2.1: Find a forbidden subgraph in the input, and branch into
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several cases, where in each case a different vertex pair is edited to destroy
the conflict graph.

For a forbidden subgraph of s vertices, we have s · (s− 1)/2 vertex pairs,
and therefore this results in a search tree size of O((s · (s − 1)/2)k). The
automated branching rule finder will “rediscover” this trivial branching by
generating a binary tree of sub-branchings which edits each vertex pair of
the conflict graph in one branch (which is then no longer followed, and has
cost 1), and makes it immutable in the other branch, till finally only one
non-immutable vertex pair is left and a reduction rule applies. Figure 3.6
demonstrates this for the Claw Editing problem, which has a claw as
forbidden subgraph.

How well does this scheme work for problems other than Cluster Edit-

ing? One important reason it works so well for Cluster Editing and re-
lated problems with the P3 as forbidden induced subgraph is the following
property:

Lemma 3.1. A connected graph with n vertices that contains at least one
P3, contains at least n − 2 P3s.

Proof. Structural induction starting from the P3.

This property seems very advantageous for our branching rule finder. An
intuition for this can be given as follows: The gain over the trivial branching
effectively comes from the application of the reduction rules. If an edge is
annotated immutable by a sub-branching, and it is part of several conflict
triples, the chances that additional sub-branchings will create an opportunity
for a reduction increase.

Unfortunately, the applicability for GMP-FS problems alone does not
guarantee getting an algorithm that is better than the trivial search tree.
We found that for some GMP-FS problems, our framework, without further
refinements, cannot find any nontrivial rules for windows that contain only
one instance of the forbidden subgraph.

In the next chapter, we will demonstrate a technique to overcome this
weakness. With the improvements from that chapter, we will present non-
trivial results for several graph modification problems in Chap. 5.





Chapter 4

Automated Discovery of Case

Distinctions

In the previous chapter, we assumed a simplistic method of determining the
set of expanded windows for each of which we invoke the optimal branching
rule finder: for Cluster Editing, generate all possible size-n graphs con-
taining a P3, or, for general problems, generate all possible windows which
are expansions of the initial window up to a certain size.

There are two drawbacks to this naïve approach:

• Often, several cases of expanded windows can be combined into a sin-
gle, more general case without worsening the branching number of the
corresponding branching rule, thereby saving time in generating the
rules, and eventually yielding a simpler algorithm.

• Since the total time complexity is determined by the worst case of the
branching rules, just distinguishing more and more cases often does
not help; for example for Triangle Deletion, there are windows
of arbitrary size for which no nontrivial branching rule can be found
based on our branching tree scheme.

The basic principle to improve upon the simplistic method is to devise
specific expansion rules aimed at creating a set of possible expanded win-
dows for which efficient branching rules can be found, while still covering all
possible inputs.

Example. Given a graph problem with the property that the input graphs
have a minimum vertex degree of three. Naïvely, we generate a set of win-
dows covering any input by successively adding vertices to an initially empty
window, up to size 4, yielding every possible connected graph of size 4. As-
sume that the window with the worst branching rule is the P4. Then we
can improve the result by requiring that the P3 gets specifically expanded
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Figure 4.1: Expansion of the P3. The trivial expansion of adding an arbitrary
vertex yields the five windows depicted in the lower part. When applying
the specific expansion based on Sect. 2.5 (which adds the common neighbor
of two P3 endpoints), we get only the two windows marked with (∗); when
applying the specific expansion from Lemma 4.2 for either edge of the P3,
we get only the two windows marked with (†)

by adding another neighbor of its middle vertex, which must exist by the
special property of the input. That way, a P4 can never be generated, and
we can improve the overall branching number.

Even if the input is not structured in any useful way, like for Cluster

Editing where the input is a general graph, this idea can still be applied:
We identify “trivial” instances of the problem, for which we devise special
branching rules, and assume them to be eliminated before applying the win-
dow expansion, thereby creating invariants which can be utilized to restrict
the set of generated cases.

When analyzing the performance of a search tree algorithm which em-
ploys this technique, one has to keep in mind that its worst-case search
tree size is determined by the worst case of the trivial branchings and the
branching using expansion and case distinction. Therefore, in devising trivial
branchings, one needs to find a trade-off between the amount of additional
structure they provide, and their branching number.

In fact, we have already seen in Chap. 2 an application of trivial branch-
ings: In the refined search tree algorithm for Cluster Editing, we iden-
tified the case in which the two endpoints of a P3 do not have a common
neighbor as trivial (Sect. 2.5). This gives us a new invariant about the
structure of the input: it is not an arbitrary graph anymore, but we may
assume that for each such pair of endpoints, we can find an additional com-
mon neighbor. Therefore, we can expand a window not only by adding an
arbitrary vertex from the neighborhood, but also selectively by adding this
common neighbor of the endpoints of a P3 within the window, if it is not
already represented in the window. With this expansion method, we only get
two possible expanded windows when expanding the P3 (Fig. 2.4 and 2.5),
compared to five when adding an arbitrary vertex (see Fig. 4.1).
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We will demonstrate the power of this approach first by giving a problem-
specific expansion rule for Cluster Editing in the next section, and then
a general rule which is applicable to many GMP-FS problems in Sect. 4.3.

4.1 Specific Window Expansion for Cluster Edit-

ing

The following theorems identify certain Cluster Editing instances G =
(V,E) as trivial, thereby introducing new invariants for the input.

Lemma 4.1. Given a graph G = (V,E). For an edge {u, v} ∈ E, if u and
v do not have a common neighbor (i.e., N(u) ∩ N(v) = ∅), one can branch
into two cases:

• delete {u, v}, or

• delete all edges adjacent to u and v, except {u, v}.

Proof. The completeness of this branching can be seen with an argument
very similar to that of Lemma 2.2: Suppose there is a clustering solution
G′ of G not covered by one of these cases, i.e., the edge {u, v} remains,
and also at least one other edge adjacent to u or v. Consider a clustering
solution G′′ generated from G′ by removing all edges adjacent to u and v,
leaving {u, v} as a 2-clique. Now let us compare the cost of editing G to
get G′′ to those of editing G to get G′: we need to delete an additional
(degG′(u)− 1) + (degG′(v)− 1) edges; however, G′ contains new edges from
each neighbor of u (except v) to v and vice versa. These edges do not need
to be added for G′′ anymore, saving (degG′(u) − 1) + (degG′(v) − 1) editing
operations.

In summary, editing G to get G′ or to get G′′ incurs the same cost,
and G′′ is covered by Lemma 4.1; therefore, considering other cases is not
necessary.

The following theorem will show that this branching considerably better
than the trivial branching from Sect. 2.5, which had a branching number of
2, and therefore is less likely to be the limiting factor for the complexity of
a search tree algorithm.

Theorem 4.1. If the branching of Lemma 4.1 is applicable, then we can
obtain a branching vector of (1, 2) or better, leading to a branching number
of 1.62 or better.

Proof. Assume {u, v} ∈ E and u and v have no common neighbor. If
deg(u) = deg(v) = 1, then {u, v} is already a clique and it can be elim-
inated. Otherwise, at least one of u and v has another neighbor; let us
assume w.l.o.g. that v has a neighbor x. If deg(u) = 1 and deg(v) = 2,
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then deleting {v, x} is clearly the only reasonable possibility to eliminate the
conflict triple v, u, x, since the other two possibilities cannot eliminate more
than one conflict triple. Therefore, we can assume deg(u) + deg(v) ≥ 4,
leading to a (1, 2)-branching or better.

Taking advantage of Theorem 4.1, we can now assume that the input for
our Cluster Editing instance is reduced with respect to the applicability
of the special branching, and devise a new expansion rule:

Lemma 4.2. Given a window W = (VW , EW ) of a graph G where G is
reduced with respect to Lemma 4.1, and an edge {u, v} ∈ EW , where u and v
do not have a common neighbor within W . We can then expand W specifically
by adding a vertex x which is a common neighbor of u and v.

Ignoring isomorphism, when adding an arbitrary neighbored vertex to
a size-s window, there are 2s − 1 possible results; since the specific expan-
sion of Lemma 4.2 predetermines two connections to the existing vertices, it
produces only 2s−2 possible results.

This gives rise to a new class of algorithms, which contain specific rules
on how to expand the initial P3. We will present details on how to find
optimal algorithms within this class in the following section.

4.2 Finding Case Distinctions for Cluster Edit-

ing

Recall the general search tree algorithm scheme we gave at the beginning of
Chap. 3: step (2) requires expansion rules, which describe how to expand
a window with local information and when to stop expanding and branch
according to a branching rule.

In Chap. 3, we only considered one expansion rule: add a vertex neigh-
bored to a vertex of the window, and stop expanding when reaching a certain
size. The previous section has shown, though, that other, problem-specific
expansion rules are possible.

We base these expansion rules on expansion steps. An expansion step
tells for a specific window how to expand it with local information.

A expansion rule will first tell which expansion step to apply to the initial
window. Depending on the actual input, an expansion step can generate
several possible expanded windows. The expansion rule must tell what to do
with each possible expanded window: either apply another expansion step,
or invoke a branching rule.

With the results from the previous section, we now have several possibil-
ities for an expansion step for Cluster Editing:

• Include an arbitrary vertex which is neighbor of the vertices already in
the window.
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(* The expanders are problem-specific. Example for Cluster Editing. *)
type expander = Expand_new_vertex | Expand_edge of int * int
type algo_step = Branching_rule | Expander of expander * algo list
and algo = { step: algo_step; branching_number: float }
let rec expansion_scheme window =

if Window.size window > limit
then { step = Branching_rule;

branching_number = find_branching_rule window } (* 1 *)
else

let expanders = problem.expanders window in (* 2 *)
let algos =

List.map
(fun expander →

let expanded = problem.expand expander window in (* 3 *)
let algos = List.map expansion_scheme expanded in (* 4 *)
let worst = worst_algo algos in

{ branching_number = worst.branching_number; (* 5 *)
step = Expander (expander, algos) })

expanders
in

best_algo algos (* 6 *)

Figure 4.2: Pseudo-Code for finding optimal window expansions

• Apply the specific expansion rule of Lemma 4.2, i.e., add the common
neighbor of a vertex pair connected with an edge to the window. This
is the preferred action, since it leads to a smaller set of expanded win-
dows. Since there might be several vertex pairs in the window matching
the criterion, this can provide several possible expansion steps.

From Sect. 3.2, we already know how to find optimal branching rules for
step (3) of the general search tree algorithm scheme; we will now focus on
finding optimal expansion rules for step (2), which differ in which expansion
step is selected for which window.

The basic idea is to take the best case of all possible expansions of a
window, while assuming the worst case of all possible results of an expansion
step.

The approach we take in our framework is straightforward. It is based
on a recursive procedure expansion_scheme (see Fig. 4.2). This procedure
takes a window and returns an expansion algorithm represented with the
recursive data type algo.

An expansion step is represented by the data type expander, which is
able to represent all possible problem-specific expansion steps for a window.



50 4. Automated Discovery of Case Distinctions

For Cluster Editing, it can either be Expand_new_vertex, meaning the
trivial expansion of adding an arbitrary new vertex, or Expand_edge, in
which case it is parameterized by two integers, denoting the two vertices for
which the common neighbor is to be added. The problem-specific function
problem.expand returns a list of possible expanded windows when given an
expander and a window.

The recursive data structure algo represents a branching rule. It con-
tains an algo_step, which describes the action of the branching rule for a
certain window, and a branching_number, which is required to compare the
performance of algos. The first possibility for algo_step is Branching_rule,
meaning the window is not to be expanded any more and the search tree al-
gorithm should branch according to an optimal branching rule. The second
possibility is Expander, in which case the algo_step holds an expander and
a list of algos, where each element of the list contains the algorithm to be
applied for the corresponding element in the list of possible expanded win-
dows returned by problem.expand. The branching_number is the branching
number of a search tree algorithm employing the expansion rule described
by the algo. The function best_algo (worst_algo) returns the algo with the
lowest (highest) branching number from a list.

If the size of the window (for graph modification problems, the number
of vertices) exceeds a predefined limit limit, an algo is returned which sim-
ply represents no further expansion and branching according to an optimal
branching rule, found by the algorithm from Chap. 3 (1). Otherwise, a list
with all possible expanders is collected (2). For Cluster Editing, it will
contain one expander which adds an arbitrary vertex, and one expander for
each edge where the two vertices it connects do not already have a common
neighbor in the window. For each expander, the list of expanded graphs is
generated (3). For each expanded graph, an optimal algo is calculated re-
cursively (4). The branching number of the resulting algo is the worst case
of all algos for the possible expanded graphs (5). Finally, from all algos, the
best, i.e., the one with the lowest branching number one is returned (6).

Figure 4.3 shows the result of expansion_scheme for Cluster Editing

when considering graphs up to size 5. For two windows ( 1© and 2©), the
problem-specific expansion was applied, i.e., the common neighbor of the
two endpoints of an edge was added; for window 3©, it is not applicable,
since for all edges, a common neighbor is already present in the window, and
therefore the standard expansion of adding an arbitrary neighbored vertex
was applied. The search tree size of a search tree algorithm employing this
expansion rule is determined by the worst case of the branching rules found
for the windows which are not expanded anymore; in this case, this is window
4©, with a branching number of 2.03.

As the figure shows, we will encounter transpositions in the search space;
we employed a transposition table in expansion_scheme to avoid evaluating
a window multiple times.
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Figure 4.3: Optimal expansion scheme for Cluster Editing with graphs
up to size 5. Bold lines denote edges for which the specific expansion rule
of Lemma 4.2 was applied, i.e., the common neighbor of the endpoints of an
edge was added to the window

4.2.1 Refined Expansion Thresholds

When looking for expansion schemes, we can speed up the search by utilizing
a user-defined cutoff value for the branching number: If a size-n graph G
already yields a branching number better than the cutoff value, we omit
to try further expansions for G. The advantage is two-fold: there are less
windows to search when looking for an expansion scheme, and the resulting
algorithm has less cases to distinguish. Since the reduced search space might
allow to consider expansions up to a larger size within a reasonable time
limit, it can even result in improved search tree sizes: for the example of
Triangle Vertex Deletion, it allowed us to examine expansions up to
9 vertices instead of 8 vertices, improving the worst-case bound on the size
of the resulting search tree from 2.47k to 2.42k (see Table 5.5).

4.3 Specific Expansion for Other Graph Modifica-

tion Problems

As explained in Sect. 3.5, for many GMP-FS problems like Triangle

Deletion, a search tree algorithm based on the trivial expansion rule of
adding a vertex until the window reaches a certain size does not lead to an
algorithm with nontrivial complexity. With an appropriate specific expan-
sion scheme, however, we succeed in finding nontrivial bounds for several
of these GMP-FS problems. We require an additional property: An edit-
ing operation must not create new conflicts. This is the case for Triangle

Editing and all vertex deletion problems, but not, for example, for Clus-

ter Editing or Claw Deletion.

We will use a special branching rule based on the following lemma. We
formulate it only for edge editing problems; the extension to other graph
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Figure 4.4: Example problem instance (note: not window) for Claw Edit-

ing. The edge {a, c} is contained in only one induced claw; therefore, delet-
ing it can be omitted from consideration. Analogously, adding {b, c} is not
useful

modification problems is straightforward.

Lemma 4.3. Given an edge editing problem with characterization by forbid-
den subgraphs, which has no input instance for which editing any vertex pair
creates a new induced forbidden subgraph.

In an instance of this problem, if a vertex pair is contained in exactly one
induced copy of a forbidden subgraph, it is never useful to edit this vertex pair.
If all vertex pairs of the forbidden subgraph can be excluded this way, i.e.,
it is disjoint from any other copy, no branching is needed, and an arbitrary
vertex pair within the forbidden subgraph can be edited.

Proof. Editing any other vertex pair within this conflict graph will also de-
stroy the conflict, and potentially another one.

Figure 4.4 illustrates this with an example. With this lemma, one can
omit one branch in the trivial branching defined in Sect. 3.5 without missing
any optimal solutions.

This lemma can be applied for example to Triangle Deletion, since
deleting an edge can never create a new triangle; however, it is not applicable,
e.g, to Cluster Editing, since adding an edge might create a new P3.

The branching number, when this branching is applicable, is at least one
less than the branching number of the trivial branching. For example for
Triangle Deletion, we have a branching number of 2 instead of 3.

If we assume the input graph to be reduced with respect to this criterion,
we gain a new invariant: every vertex pair of an induced conflict graph must
be part of at least one other induced conflict graph. This allows a new
specific window expansion rule:

Lemma 4.4. For an edge editing problem with characterization by a forbid-
den subgraph F , given a window W = (VW , EW ) of a graph G where G is
reduced with respect to Lemma 4.1, and a vertex pair {u, v} is part of exactly
one conflict graph, we can expand the window specifically by adding vertices
so that {u, v} is part of at least two conflict graphs.



4.3 Specific Expansion for Other Graph Modification Problems 53

PSfrag replacements

1©
2©
3©

Figure 4.5: Example expansion for Triangle Deletion. The trivial expan-
sion of adding a vertex for the window at the top yields the eleven windows
depicted at the bottom. However, Lemma 4.3 tells us that every edge must
be part of at least two triangles. When considering this for the edge denoted
with a bold line, we only get the four windows at the right
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Figure 4.6: Example expansion for Claw Vertex Deletion. Vertex v
must be part of at least two claws, because otherwise we would employ a
3-branching on the other three vertices of the claw. Representing this fact
in the window requires adding up to three vertices. The dotted edges may
or may not be present in the input graph, leading to a variety of possible
expanded windows

The correctness of Lemma 4.4 is easy to see. Figure 4.5 illustrates the
rule for Triangle Deletion.

The branching number of a search tree utilizing this expansion rule is
determined by the worse branching number of the following two parts: the
branching of Lemma 4.3, and the automatically generated branching with
expansion and case distinction. Therefore, with this technique, one cannot
get an algorithm with the branching number decreased by more than one
compared to the trivial search tree. For example, even if we can come up
with a set of branching rules based on the specific expansion which yields a
worst-case branching number of 1.7, the branching number of the resulting
algorithm is still bound by the 2 from the branching of Lemma 4.3.

When implementing the expansion rule, one has to keep in mind that
when looking at a vertex pair in a window which is only part of one conflict
graph, it might have only this very vertex pair in common with another
conflict graph in the input. Thus, it is required to add several vertices at
once in one expansion step to the window to represent the second conflict
graph; for a conflict graph of size s, up to s − 2 vertices for editing and
deletion problems, and up to n− 1 vertices for vertex deletion problems (see
Fig. 4.6).





Chapter 5

Experimental Results

In this chapter, we will present key figures for some algorithms found with
our framework for several graph modification problems. For each of these
problems, we describe the problem-specific rules implemented within our
framework, and present the results of our experiments. Thereby, we mea-
sured a variety of values:

size: Maximum number of vertices in the considered windows;

time: Total running time;

isom: Percentage of the running time spent for the isomorphism tests;

concat: Percentage of the running time spent for concatenating branching
vector sets;

graphs: Number of graphs for which a branching rule was calculated;

maxbn: Maximum branching number of the computed set of branching
rules (determining the worst-case bound of the resulting algorithm);

avgbn: Average branching number of the computed set of branching rules;
assuming that every induced subgraph appears with the same likeli-
hood, (avgbn)k would give the average size of the employed search
trees, where k is the number of graph modification operations;

bvlen: Maximum length of a branching vector occurring in the computed
set of branching rules, corresponding to the number of leaves in the
branching tree;

medlen: Median length of branching vectors occurring in the computed set
of branching rules;

maxlen: Length of longest branching vector generated in a node of the meta
search tree (including intermediary branching vectors);
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size time isom concat graphs maxbn avgbn bvlen medlen maxlen bvset

(1) 4 <1 sec 3% 16% 5 2.42 2.33 5 5 8 7
(1) 5 2 sec 2% 50% 20 2.27 2.04 16 9 23 114
(1) 6 9 days 0% 100% 111 2.16 1.86 37 17 81 209179

(2) 4 <1 sec 1% 20% 6 2.27 2.27 5 5 8 7
(2) 5 3 sec 0% 52% 26 2.03 1.97 16 12 23 114
(2) 6 9 days 0% 100% 137 1.92 1.80 37 24 81 209179

Table 5.1: Results for Cluster Editing:
(1) Enumerating all size-s graphs containing a P3;
(2) Expansion scheme utilizing Theorem 4.1

bvset: Size of largest branching vector set computed in a node of the meta
search tree.

The tests were performed on a 2.26GHz Pentium 4 PC with 1GB of
main memory running Linux. Memory requirements were up to 300MB.

5.1 Edge Deletion Problems

5.1.1 Cluster Editing

Cluster Editing is the NP -complete problem that has served as running
example in the previous chapters; we summarize the results in Table 5.1.
Applying the technique for finding optimal branching trees from Chap. 3,
we obtain a worst-case search tree size of O(2.16k); the application of the
problem-specific expansion rule from Sect. 4.1 leads to a worst-case search
tree size of O(1.92k), considerably improving the manually found algorithm
of Theorem 2.4. This shows the usefulness of the expansion approach. It
underlines the importance of devising a set of good problem-specific rules for
the automated approach. Notably, the average branching number avgbn for
the computed set of branching rules is significantly lower than the worst-case.

The running time of our program increases as the graph size increases,
making it—at the current state of the art—impractical to inspect subgraphs
of size larger than six without sacrificing optimality. The typical number of
branching cases for a window (medlen) seems high compared to human-made
case distinctions (cf. Fig. 2.4 and 2.5, with 5 cases each), but should pose
no problem for an implementation.

The main reason for the high running times is that the case distinction
becomes more and more complicated as the sizes of considered graphs in-
crease. As one consequence of the more complicated case distinction, the
program has to do much more branching vector concatenations (refer to the
drastic increase of value bvset in Table 5.1). As we have stated in Sect. 3.3,
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besides the subsumption mechanism, we have not found an efficient way
to determine the best concatenation of two sets of branching vectors other
than basically trying all possibilities. It can be observed from Table 5.1
that, for graphs with six vertices, the program spends almost all its run-
ning time on the concatenations of branching vectors; branching vector sets
can contain huge amounts of incomparable branching vectors (bvset), and
a single branching vector can get comparatively long (maxlen). Hence, one
of the most challenging tasks to improve our program is a solution of this
problem. This is also the reason that graph isomorphism testing, perhaps
surprisingly, contributes a decreasing proportion (isom) to the running time
when increasing the graph size.

Summarizing the results together with the findings about a problem ker-
nel [GGHN03b], we have the following theorem:

Theorem 5.1. Cluster Editing can be solved in O(1.92k+|V |3) time.

Observe that Cluster Editing is equivalent to unweighted Corre-

lation Clustering on complete graphs as studied in [BBC02]. The best
known polynomial-time approximation algorithm for minimizing the number
of of edge modifications yields an approximation factor of only 4 [CGW03],
giving particular importance to exact fixed-parameter algorithms for this
problem.

5.1.2 Cluster Deletion

Cluster Deletion is the special case of Cluster Editing where only
edge deletions are allowed. It was shown to be NP -complete by Natan-
zon [Nat99]. In a previous work [GGHN03b], an algorithm for Cluster

Deletion with O(1.77k) search tree size was given.

Because of the close relation to Cluster Editing, the problem-specific
expansion scheme of Sect. 4.1 is also applicable to Cluster Deletion.
However, it turns out that the search tree size of the optimal search trees is
low enough that the time complexity of the resulting algorithm is determined
by the (1, 2)-branching of Theorem 4.1. Therefore, to improve the overall
time complexity, it would be desirable to improve upon this branching with
a more careful case distinction. We will now present such an improvement.

Lemma 5.1. Given a graph G = (V,E). If there is an edge {u, v} ∈ E
where u and v have no common neighbor, then we can in Cluster Dele-

tion apply a branching rule with the branching vector (1, 3).

Proof. As shown in the proof for Theorem 4.1, there is no need for branching
if deg u + deg v ≤ 3. If deg u + deg v ≥ 5, we have at least a (1, 3)-branching
by Lemma 4.1: delete either {u, v} or all other edges adjacent to u and v.
It remains the case of deg u + deg v = 4. We distinguish two subcases:
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size time isom concat graphs maxbn avgbn bvlen medlen maxlen bvset

(1) 4 <1 sec 12% 12% 5 1.77 1.65 4 2 5 4
(1) 5 <1 sec 37% 22% 20 1.63 1.52 8 2 13 83
(1) 6 6min 4% 92% 111 1.62 1.43 16 2 35 7561

(2) 4 <1 sec 7% 15% 6 1.77 1.70 4 2 5 4
(2) 5 <1 sec 11% 33% 26 1.63 1.54 8 2 13 83
(2) 6 6min 0% 97% 137 1.53 1.43 16 2 35 7561

Table 5.2: Results for Cluster Deletion:
(1) Enumerating all size-s graphs containing a P3;
(2) Expansion scheme utilizing Lemma 5.1

(1) Vertex u has two neighbors x, y ∈ N(u) with x 6= y, x 6= v and y 6= v.

(1.1) If {x, y} /∈ E, then we can delete {u, x} and {u, y}, since at least
two of the edges {u, v}, {u, x}, and {u, y} have to be deleted and
deletion of {u, x} and {u, y} does not affect any solution of the
problem instance.

(1.2) If {x, y} ∈ E, then we assume that there is at least one ver-
tex z ∈ V and z 6= u which is a neighbor of x or y, since other-
wise, u, v, x, y form an isolated component. It is easy to observe
that deleting only one of the edges {u, x} and {u, y} can never
be better than deleting both of them or keeping them both and
deleting {u, v} and the edges adjacent to x and y but different
from {x, y}, {u, x}, and {u, y}. Since there is at least one edge
between y and z or x and z, we get a branching of at least (2, 2),
which is better than a (1, 3)-branching.

(2) Each of the vertices u and v has an additional neighbor, i.e., there are
vertices x ∈ N(u) and y ∈ N(v) with x 6= y, x 6= v and y 6= u.

(2.1) If one of x and y has no neighbor besides u and v, then we
delete {u, v}. This is justified as follows: Assume w.l.o.g. that y
has no neighbor besides v. For the case that x and u are in the
same clique of the clustering solution, we have to delete {u, v};
for the case that they are not, we have to delete either {u, v}
or {v, y}. Therefore, deleting {u, v} is always a correct solution
for the subgraph consisting of u, v, and y.

(2.2) If vertex x has more than one neighbor, then we consider the
edge {u, x}. Since u and x have no common neighbor and deg u+
deg x ≥ 5, we can achieve at least (1, 3)-branching based on {u, x}.

(2.3) If both x and y have exactly one neighbor, both different from u
and v, then we make a branching into two cases. The first case is
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size time isom concat graphs maxbn avgbn bvlen medlen maxlen bvset

(1) 4 < 1 sec 2% 19% 4 2.57 2.47 6 5 10 8
(1) 5 6 sec 0% 83% 19 2.47 2.34 14 5 45 530

Table 5.3: Results for Triangle Deletion:
(1) Expansion scheme utilizing specific expansion rule

that v and y are in the same clique of the clustering solution. For
this case, we have to delete the edge adjacent to v and y different
from {v, y}. For the second case that v and y are not in the
same clique, we have to delete {v, y}. The resulting subgraph,
which consists of u, v, x and the other neighbor of x, satisfies
the assumption of case (2.1) for the edge {u, x}. Therefore, we
can delete {u, x}. Summarizing the two cases, we have a (2, 2)-
branching.

In summary, we have a (1, 3)-branching in the worst case.

5.1.3 Triangle Deletion

The Triangle Deletion is the edge deletion problem with the triangle
(C3) as forbidden subgraph. Since the forbidden subgraph is a clique, the
completion and editing problems are not meaningful.

Problem-specific rules. We follow the general scheme from Sect. 3.5. To
get a nontrivial search tree (i.e., one with better than O(3k) size), the specific
expansion from Sect. 4.3 is required.

Discussion. This problem is an example where the mechanized analysis
so far could not improve an existing search tree algorithm. Since Trian-

gle Deletion can be reduced to 3-Hitting Set, we can solve it using
an existing search tree algorithm for 3-Hitting Set having a worst-case
branching number of 2.27 [NR03a], whereas the worst-case branching num-
ber determined by our analysis is 2.47 when considering windows up to size
five. We are confident, however, that, by additional reduction rules or the
use of heuristics for branching vector concatenation, beating the 2.27 bound
is feasible.

5.2 Vertex Deletion Problems

We have also applied our automated approach to several vertex deletion
problems that have a forbidden set characterization, with the set containing
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a single forbidden subgraph. As shown by Lewis and Yannakakis [LY80], all
these problems are NP -complete.

Vertex deletion problems defined by a single forbidden induced subgraph
of size d > 1 can be reduced to the NP -complete d-Hitting Set problem,
which is defined as follows:

Problem 5.1. Input: A collection C of subsets of size d of a finite set S
and a positive integer k.

Question: Is there a subset S′ ⊆ S with |S′| ≤ k such that S′ contains
at least one element from each subset in C?

Note that d-Hitting Set can be seen as a generalization of Vertex

Cover, which is equivalent to 2-Hitting Set.

Lemma 5.2. For a Vertex Deletion problem where the graph property
is defined by a forbidden induced subgraph of size d, one can find an O(nd)
time many-one reduction to d-Hitting Set.

Proof. For a given instance of the Vertex Deletion problems consisting
of a graph G = (V,E) and an integer k, we construct a finite set S such
that each element in S corresponds to a vertex in V , i.e., n := |S| = |V |.
For a forbidden subgraph with d vertices, we can trivially enumerate all
occurrences of the forbidden subgraph as induced subgraph and, for each of
the occurrences construct a set consisting of d elements; each of the elements
corresponds to a vertex in the occurrence. These d-element sets form the
collection C. Then, we have an instance of the d-Hitting Set problem.
It is easy to observe that the Vertex Deletion instance can be solved
with at most k vertex deletions iff the constructed instance of d-Hitting

Set has a solution S′ with |S′| ≤ k. The main part of the reduction is to
enumerate all occurrences of the forbidden size-d subgraph and, hence, can
be done in O(nd) time.

We considered the two problems Cluster Vertex Deletion and Tri-

angle Vertex Deletion, which are vertex deletion problems with the
size-3 graphs P3 and C3 as forbidden subgraph, respectively. As outlined
above, these problems, therefore, can be reduced to the NP -complete 3-
Hitting Set. For 3-Hitting Set, an elaborate search tree algorithm is
known with O(2.27k + |C|) running time [NR03a]. We utilized the reduction
rules for GMP-FS problems from Sect. 3.5. As expansion rule, the generic
method of adding an arbitrary vertex to the window was applied.

We also examined two vertex deletion problems with forbidden subgraphs
of size 4, namely Claw Vertex Deletion, with a claw as forbidden sub-
graph, and Cograph Vertex Deletion, with the P4 as forbidden sub-
graph. Cograph modification problems in particular seem like an interesting
problem because, when restricted to cographs, many NP -hard problems are
solvable in polynomial time [CPS85].
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size time isom concat graphs maxbn avgbn bvlen medlen maxlen bvset

(1) 4 < 1 sec 3% 16% 5 2.42 2.37 4 3 6 3
(1) 5 < 1 sec 6% 14% 20 2.31 2.16 4 4 10 7
(1) 6 1 sec 8% 12% 111 2.31 1.98 6 4 14 24
(1) 7 26 sec 19% 14% 852 2.27 1.86 6 4 21 65
(1) 8 39min 34% 12% 11116 2.27 1.76 10 5 32 289

(2) 4 < 1 sec 12% 3% 6 2.42 2.37 4 3 6 3
(2) 5 < 1 sec 3% 15% 26 2.31 2.16 4 4 10 7
(2) 6 < 1 sec 0% 22% 74 2.31 2.06 6 4 13 12
(2) 7 < 1 sec 0% 27% 119 2.27 2.02 6 4 19 49
(2) 8 5 sec 0% 38% 205 2.27 2.00 8 4 25 146
(2) 9 46 sec 0% 53% 367 2.26 1.92 9 4 37 534
(2) 10 7min 0% 69% 681 2.26 1.90 11 4 48 2422

Table 5.4: Results for Cluster Vertex Deletion:
(1) Enumerating all size-s graphs containing a P3;
(2) Expansion scheme with cutoff (see Sect. 4.3)

size time isom concat graphs maxbn avgbn bvlen medlen maxlen bvset

(1) 5 < 1 sec 2% 17% 9 2.57 2.24 5 4 11 10
(1) 6 < 1 sec 2% 25% 44 2.57 2.24 7 4 19 37
(1) 7 7 sec 0% 32% 447 2.47 2.10 10 4 30 121
(1) 8 9min 0% 46% 7225 2.47 1.97 13 5 42 384

(2) 8 23 sec 0% 43% 433 2.47 2.10 13 4 34 355
(2) 9 10 hours 0% 56% 132370 2.42 1.97 17 5 66 1842

Table 5.5: Results for Triangle Vertex Deletion:
(1) Expansion scheme utilizing problem-specific expansion rule;
(2) additionally, with cutoff
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Discussion. We show detailed results for Cluster Vertex Deletion

in Table 5.4 and for Triangle Vertex Deletion in Table 5.5.
Using the enumeration without nontrivial expansion for Cluster Ver-

tex Deletion, we could only process graphs with up to eight vertices
since the number of graphs to be inspected is huge. This yields the same
worst-case branching number 2.27 as we have from the 3-Hitting Set al-
gorithm [NR03a]. Using a cutoff value (see Sect. 4.2.1) reduces the number
of graphs to be inspected drastically and, thus, allows us to inspect graphs
with up to ten vertices. In this way, we can improve the worst-case branching
number slightly to 2.26.

When comparing the two approaches, we observe that, when using cut-
off values, the average branching number (avgbn) of the computed set of
branching rules becomes larger compared to the case where cutoff values
were not used. The explanation is that the branching is not further im-
proved as soon as it yields a branching number better than the cutoff value.
When implementing the computed search tree algorithm, however, a better
average branching number might be more desirable than a better worst-case
branching number.

For both Claw Vertex Deletion and Cograph Vertex Deletion,
we examined windows up to size 7; the best algorithm found for Claw Ver-

tex Deletion has a branching number of 3.55, and the best for Cograph

Vertex Deletion has a branching number of 3.30. This means we could
not beat the branching number of 3.30 provided by the algorithm for 4-

Hitting Set; however, at least for Cograph Vertex Deletion, we can
match its performance with a lot less effort.

5.3 Bounded Degree Dominating Set

Domination in graphs is among the most important problems in combinato-
rial optimization [HHS98a, HHS98b]. The underlying NP -complete decision
problem Dominating Set is defined as follows:

Problem 5.2. Input: A graph G = (V,E) and a positive integer k.
Question: Does G have a dominating set of size at most k, that is,

a subset V ′ ⊆ V of vertices such that every vertex in V − V ′ is adjacent to
some vertex in V ′?

Dominating Set remains NP -complete even when considering only spe-
cial graph classes, like planar graphs or graphs in which the degree of G is
bounded by a constant B ≥ 3. Here, we consider the case of graphs with
degree bounded by 3. This restriction allows to give a size bound for a trivial
search tree algorithm: for any non-dominated vertex v, either take v into the
dominating set, or one of its neighbors. This search tree has size O(4k).

For our framework, we first introduce a vertex annotation “white”, which
marks vertices that are already dominated, but might still be chosen to be
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in the dominating set to dominate other vertices. The branching objects
are black (i.e., non-white) vertices: As sub-branching, take either a vertex v
into the dominating set, or, for each neighbor of v, take this neighbor. When
taking a vertex, we remove it from the window and mark all neighbors white.
To be able to properly execute this sub-branching, all neighbors of v need to
be represented in the window; therefore, we introduce an annotation which
tracks the exact degree of each node in the window.

These ingredients would be already enough to reproduce the trivial search
tree algorithm. For additional gain, we need reduction rules. Alber et
al. [AFF+01] give several simple reduction rules in the context of a prob-
lem kernel reduction, for example:

• Delete edges between white vertices.

• Delete a degree-1 white vertex.

• If there is a degree-1 black vertex w with neighbor u (either black or
white), then delete w and place u in the dominating set.

We implemented all of the applicable reduction rules of [AFF+01].
The expansion rule adds the neighbor of a vertex which does not yet

have all of its neighbors represented in the window (as determined with the
exact degree annotation). One has to consider all combinations of whiteness,
degree and connections to other vertices of this new vertex to other vertices
in the window.

When expanding up to graphs of size 5, we could determine a search
tree algorithm with search tree size O(3.79k), where k denotes the num-
ber of vertices in the dominating set. When considering larger sizes, the
computation time to find an optimal branching for a specific window be-
came prohibitive; this can be explained with the higher number of cases in
a sub-branching as compared to graph modification problems. Conceivably,
heuristics for finding non-optimal branching rules to allow examination of
larger expanded windows would make sense here; initial experiments with a
very simple heuristics indicate a search tree size of O(3.71k).

5.4 Summary

Focusing on the worst-case branching numbers computed for various graph
modification problems, we give an overview on our results in Table 5.6: We
compare the worst-case branching numbers corresponding to a trivial branch-
ing, the best so far known result, and the search tree algorithm computed
by our method.

In Fig. 5.1, we compare, for different graph modification problems, the
decrease of the worst-case branching numbers when increasing the size of
the considered subgraphs. In most cases, inspecting larger subgraphs yields
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Problem Trivial Known result New

Cluster Editing 3 2.27 [GGHN03b] 1.92
Cluster Deletion 2 1.77 [GGHN03b] 1.53
Cluster Vertex Deletion 3 2.27 [NR03a] 2.26
Triangle Deletion 3 2.27 [NR03a] 2.47
Triangle Vertex Deletion 3 2.27 [NR03a] 2.42
Cograph Vertex Deletion 4 3.30 [NR03a] 3.30
Bounded Degree Dominating Set 4 3.71

Table 5.6: Summary of search tree sizes for the problems considered
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subgraphs

an improved worst-case branching number. There are exceptions, however:
For example, in Triangle Vertex Deletion, we observe that we do not
improve the worst-case branching number when going from graph size 3 to 4,
from 5 to 6, and from 7 to 8, but only from 4 to 5, 6 to 7, and 8 to 9. This
is caused by the problem-specific expansion rule 4.3, which needs to add two
vertices at once.

5.5 Outlook

In this section, we will give details for possible applications of our framework
to several further problems.

5.5.1 Vertex Cover

The Vertex Cover problem is one of the six “basic” NP -complete problems
according to Garey and Johnson [GJ79]. It is certainly among the best-
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studied combinatorial problems.

Problem 5.3. Input: A graph G = (V,E).

Question: A vertex cover of G, i.e., a subset V ′ ⊆ V such that, for
each edge {u, v} ∈ E , at least one of u and v belongs to V ′.

For us, Vertex Cover is of special interest because of its simple struc-
ture, and because very refined search tree algorithms are known, the best
of which has O(1.286k + kn) running time [CKJ01, NR99, NR03b], where k
is the number of vertices in the vertex cover, and n is the total number of
vertices in the input.

A sensible representation of windows is clearly an induced subgraph. As
annotations, the exact degree of each vertex seems useful; for vertices with
high (≥ 6) or low (≤ 2) degree, good branchings are known. The sub-
branching consists of two cases: either take a vertex v into the vertex cover
(and remove it from the window), or take all of its neighbors (and remove
them).

Many reduction rules for Vertex Cover have been devised, for example
“vertex folding” [CKJ01], which gets rid of certain degree-2 vertices. These
reduction rules usually can be applied when given only the window view on
the instance, making Vertex Cover a hopeful candidate for employment
of our framework.

5.5.2 X3SAT

Because of their manifold applications, satisfiability problems have been
subject of intense research in the past [Sch01, DHIV01]. The Exact 3-

Satisfiability problem is defined as follows:

Problem 5.4 (X3SAT). Input: A set V of n variables and a collection C
of conjunctive normal form clauses over V , i.e., C is a disjunction of clauses
ci : C = c1 ∨ c2 ∨ · · · ∨ cm,m ∈

�
, and each clause ci is a conjunction of at

most 3 literals over V .

Question: Is there a truth assignment t : V → {0, 1}, such that exactly
one literal in each clause is set to true?

X3SAT is NP -complete. Hirsch and Kulikov [HK02] have given an algo-
rithm which solves it in O(1.1194n) time. Their algorithm also follows the
well-known search tree scheme of reduction and branching.

As window, we propose a subset of the clauses. An annotation for each
variable, which captures the number of positive and negative occurrences of
a variable, or at least bounds of this variable, seems advisable. The sub-
branching is obvious: For a variable v, branch into two cases with v set
to true and v set to false. Regarding reduction rules, one can find a large
collection in the paper by Hirsch and Kulikov.
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Adapting our framework to X3SAT or similar satisfiability problems
seems interesting, because it would demonstrate applicability beyond graph
problems. Also, comparisons with recent automated case distinction ap-
proaches for satisfiability problems [NS03, FK03] are desirable.
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Implementation

The source of our implementation is divided into two roughly equal sized
parts. The first part, written in about 1500 lines of low-level C, handles the
graph representation and the interface to the nauty library [McK90], which
provides generation of canonical representations of graphs for isomorphism
tests and hash table operations. For speed reasons, it also provides some
problem-specific operations like checking whether a graph contains a P3.

The second part, which implements the advanced algorithms like the
meta search tree, the graph enumeration, and the expansion scheme is writ-
ten in Objective Caml [LVD+96], a high-level functional programming lan-
guage. Features like automatic memory management, closures, and powerful
data structure representation allowed for much faster and easier development
than an early C++ prototype did.

Glue code provides the functionality of the C code as an abstract graph
data type. All operations on graphs are functional-style, i.e., graphs are
never modified, but each operation creates a new graph. This might result
in some performance loss, because it puts more load on the garbage collector,
but was certainly helpful in avoiding bugs and resulted in cleaner code.

6.1 Graph Representation

A graph with n vertices is represented as n words, where bit i in word j
is set iff the edge {i, j} exists. Clearly this representation is redundant,
since, allowing only undirected graphs, bit i in word j and bit j in word i
must always have the same value; also, disallowing self-loops, bit i in word
i must always be 0. However, this representation allows very fast tests for
the existence of an edge, fast iteration over all neighbors, and also simplifies
some more complicated algorithms like the test for connectedness. Also, it
can be directly used by nauty.1

1Note that for compatibility with nauty, the bits are numbered starting with the most
significant bit.
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A limitation of this representation is that the number of vertices is limited
by the maximum size of a word, which is 64 for the C language. Since our
algorithms usually enumerate at least a noticeable percentage of all graphs
up to size n, this does not seem to be a serious limitation (all graphs we
studied had less than 20 vertices). The limitation could also be removed
with moderate effort by using multiple words per vertex.

Our graph representation allows to attach an arbitrary amount of at-
tribute bits to both vertices and vertex pairs. For example, Cluster Edit-

ing requires an “immutable” bit for each vertex pair. Vertex pair attribute
bits are represented like graphs as vectors of n words; in fact, the edges of
a graph are simply represented by a special vertex pair attribute bit. Ver-
tex attributes are stored with as a single word per attribute, with one bit
per vertex. For example, Bounded Degree-3 Dominating Set requires
three bits: one to store the color (“black” or “white”) and two to store the
degree of the vertex.

The code is organized so that graph modification problems with forbid-
den subgraph characterizations can be added fairly easy; it would even be
feasible to modify it to accept arbitrary forbidden subgraphs and generate
the necessary functions automatically.

6.2 Representing Branching Vector Sets

As explained in Sect. 3.2, the following function bvset_merge can take a
large percentage of the total running time:

bvset_merge: Given three sets of branching trees B, N1, and N2.
2 Let

N1 × N2 denote the set of all possible concatenations of a branching vector
from N1 with a branching vector from N2. Calculate B′ = prune(B ∪ (N1 ×
N2)), where prune(S) = {v ∈ S : @x ∈ S : x subsumes v} (recall Sect. 3.3
for the definition of “subsume”).

This operation has to be carried out in each node of the meta search
tree, for each branching object; B is a set of possible branching rules gained
from considering other branching objects, and N1 and N2 are sets of branch-
ing rules for the current window when branching according to the current
branching object into the first and second branch.

While, from an algorithmic viewpoint, we are dealing with sets of branch-
ing rules represented as branching trees, for the bvset_merge operation, only
their branching vectors are relevant. If one is only interested in the branching
number of an optimal branching rule, one could even discard the branching
trees and only pass their branching vectors. Therefore, we will only talk
about “branching vector sets” in the following.

2We will again, for simplicity, only depict the case of branching rules based on sub-
branchings into exactly two cases.
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(1, 1, 4)
(1, 2, 3)
(1, 3, 3, 4)
(2, 2, 2, 3)
(2, 2, 3, 3, 4)
(2, 3, 3, 3, 4, 4)
(3, 3, 3, 3, 4, 4, 4)
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Figure 6.1: Trie representation of a branching vector set. This example rep-
resents the set of branching vectors the meta search tree finds for Cluster

Editing with a P5 as window

A simplistic implementation would represent a branching vector set as an
array of branching vectors. An obvious improvement is to keep these vectors
sorted at all time, since that simplifies comparing them.

The operation bvset_merge can then be implemented as follows: Initial-
ize B′ with B. For each possible concatenation v of two vectors from N1

and N2, first check if it is subsumed by any vector from B′. If so, discard it.
Otherwise, discard all vectors from B′ which are subsumed by v, and add v
to B′. (In practice, these two operations can be done in parallel.)

Consider sets of n branching vectors, each of length l (in our measure-
ments, we encountered values for n up to 200,000 and for l up to 80). With
the simple array representation, we have:

• O(n · l) memory usage;

• O(l) time for comparing two branching vectors;

• O(n3 · l) time for bvset_merge (generate each concatenation, and com-
pare against each existing branching vector).

In particular because of the very inefficient merging (which has to be
done in each meta search tree node), better data structures are needed. One
possibility is to use a trie, which is a tree where each node is labeled with
an integer, and each path from the root to a leaf represents a branching
vector (see Fig. 6.1). Since a branching vector cannot be a prefix of another
incomparable one, no marking of vector ends in internal node is needed.

This has several advantages: Firstly, common prefixes are represented
in a compact form, reducing memory requirements. Secondly, the required
operations become much faster: We still generate each concatenation v of
two vectors. We can then, in parallel, check whether v is subsumed by any
vector represented in B, or whether any vector in B is subsumed by v and
must be discarded. For this, we traverse both the vector and the trie in
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parallel, very similar to the comparison of just two branching vectors.Each
time we get an “incomparable” result, there is no need to further traverse the
trie, therefore skipping further comparison with a potentially large amount
of branching vectors.

Because of the much increased overhead compared to the simple array
storage, the trie representation only amortizes when working with very large
branching vector sets (several 1000 vectors). Therefore, for simple problems,
where the meta search tree is shallow, it might be more efficient to employ
the array representation, or a hybrid scheme that switches to tries once the
sets reach a certain size.

An early prototype in C++ used the array representation; the current
Ocaml code only implements the trie representation, for reasons of simplicity.
Evaluating the trade-offs is subject of future work. Also, it seems feasible to
speed up bvset_merge further by not generating all pairs of concatenations
explicitly, but to traverse N1 and N2 intelligently.

6.3 Invocations

The main program, which is called ce-branch, can be called in three different
basic modes:

• Find an optimal branching tree for a particular window (default);

• Find branching trees for all windows of a certain size (-e option);

• Expansion scheme up to a certain size (-x option).

The problem is selected with the -p option. Currently implemented are:

• ce: Cluster Editing

• cd: Cluster Deletion

• cvd: Cluster Vertex Deletion

• td: Triangle Deletion

• tvd: Triangle Vertex Deletion

• clawvd: Claw Vertex Deletion

• p4vd: Cograph Vertex Deletion

• squarevd: Square Vertex Deletion

• bd3ds: Bounded Degree-3 Dominating Set

We will give a few examples for the modes. Single graphs can be input in
two ways: on standard input, where each input line consists of two integers
denoting two vertices connected with an edge, or as “GraphID”. A GraphID
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is an integer which compactly encodes undirected graphs with a binary rep-
resentation, where bit 0 is set if the edge {0, 1} is present, bit 1 for {0, 2},
bit 3 for {1, 2}, and so on; generally, the edge {u, v}, u < v is encoded in
bit

∑v−1
i=0 i + u. A GraphID is passed with the -n option and its decimal

representation:

% ./ce-branch -p ce -n 880

{

0 4 connected

1 3 connected

2 3 connected

2 4 connected

3 4 connected

} cost = 0

ANSWER:

[[1 1 1] 3.000000

[1 1 2 3] 2.546818

[1 1 2 5 5] 2.460890

...

[2 3 3 3 3 3 3 3 3 4 5] 2.215213

[2 3 3 3 3 3 3 3 4 4 5 5] 2.191183

]

Best branching vector:

[1 2 3 3 4 5 5] 2.120334

({0, 4}: ({0, 2}: ({0, 3}: ({0, 1}: *, *), *),

({0, 3}: ({0, 1}: *, *), *)), *)

The first part of the output, between curly braces, is the input graph (in
this case, the one corresponding to the GraphID 880). The next part lists
all incomparable branching vectors computed by the root of the meta search
tree. Then, the best one is displayed, along with a dense representation of the
corresponding branching tree in the format (branch_edge: left_branch,

right_branch), where a * marks a leaf. Edges are in the format {u, v},
where u and v are integers denoting vertices.

This branching tree is also depicted in Fig. 6.2; the vertices are numbered
clockwise with 0 at the top.

With the -f option, a figure of the branching tree in xfig format is
printed to the standard output. For example, the following invocation yields
the picture in Fig. 6.2:

% ./ce-branch -n 880 -f > test.fig

When invoked with the -e or -x option, the program prints one line for
every window for which a branching rule is calculated (lines wrapped here
for reading convenience):
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% ./ce-branch -e 4

30 2.26953084 0 6 8 336 5

({0, 2}: ({0, 1}: ({0, 3}: *, *), ({0, 3}: *, *)), *)

44 2.41421356 0 7 8 336 5

({2, 3}: ({0, 2}: ({0, 1}: *, *), ({1, 2}: *, *)), *)

56 2.41421356 0 5 8 336 5 ({0, 3}:

({0, 1}: ({0, 2}: *, *), ({0, 2}: *, *)), *)

60 2.26953084 0 5 6 336 5

({0, 3}: ({0, 1}: ({0, 2}: *, *), ({0, 2}: *, *)), *)

62 2.26953084 0 5 5 336 5

({0, 1}: *, ({0, 2}: ({0, 3}: *, *), ({0, 3}: *, *)))

We will explain the meaning of the columns with the first line as example:

• 30: GraphID of the window;

• 2.26953084: branching number;

• 0: run time in seconds for this window (rounded to next integer);

• 6: maximum size of a branching vector set;

• 8: maximum length of a branching vector;

• 336: number of branching vector set merge operations;

• 5: length of the optimal branching vector;

• rest: compact representation of an optimal branching tree.
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6.4 Adding Problems

The process of adding a new problem is not as smooth yet as it could be.
In particular, it is assumed that the window is an annotated graph, and
problems with sub-branching into more than two cases require some source
changes and recompilation.

The main tasks when adding a new problem are:

1. Deciding on annotations.

2. Identifying the initial window.

3. Identifying branching objects.

4. Writing the sub-branching function.

We will illustrate the process by an example: the Square Vertex

Deletion problem, i.e., the vertex deletion problem with the square (C4)
as forbidden induced subgraph.

The main task is to create an instance of the Problem.t structure defined
in problem.ml. Some of the more important fields are:

vertex_bits/edge_bits: number of bits for annotation of vertices and
edges, respectively. Here, one bit is needed for the “immutable” vertex
annotation; as a little quirk, the implementation stores the edges of the
graph as vertex pair annotations, and therefore also one vertex pair bit
(slightly misleading called edge_bits) is needed.

conflict_graph: A function which returns an initial window. Here, we
return a graph containing a square, with no annotations.

fold_branch_objs: A function which, given a window, iterates over all its
valid branching objects. Here, we want to branch on all mutable ver-
tices with degree at least one (in the implementation, degree 0 vertices
are not considered to be part of a window, but rather dummies).

branch_1/branch_2: The two cases of a sub-branching.3 Here, for the
first sub-branching case (branch_1), the generic function del_vertex

can be used, which deletes a vertex and all adjacent edges. The sec-
ond sub-branching case (branch_2) requires a problem-specific func-
tion, since after marking a vertex permanent, the reduction rules from
Sect. 3.5 need to be applied.

expanders: A list of expanders for the expansion scheme. Here, we can ei-
ther use the problem-specific expander based on results from Sect. 4.3,
or the generic expander which adds a vertex to the window.

3Other numbers of cases in sub-branchings require slight code modifications.
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let square_vertex_deletion = {
name = "square-vertex-deletion";
vertex_bits = 1;
edge_bits = 1;
conflict_graph = fun size vb eb →

List.fold_left
(fun g (i, j) → Graph.set_connected g i j)
(Graph.make size vb eb)
[(0, 1); (1, 2); (2, 3); (3, 0)];

fold_branch_objs =
vertex_fold (fun g i →

not (Graph.is_immutable_vertex g i)
&& not (Graph.is_deg_0 g i));

branch_1 = fun g (Branch.Vertex i) → Graph.del_vertex g i;
branch_2 = fun g (Branch.Vertex i) → Graph.svd_permanentize g i;
expanders = [ Algo.Vertex_expander square_expander;

Algo.Expander add_vertex_expander ]; }

Figure 6.3: Problem definition for Square Vertex Deletion

The actual code for Square Vertex Deletion is given in Fig. 6.3.
In addition to this structure, the option parsing in main.ml has to be

adapted.
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Conclusion

We presented a software tool to automatically generate exact search tree
algorithms for graph modification problems, which seems applicable to a
large class of NP -hard problems.

7.1 Discussion of Results

We concentrated on the worst-case running time analysis for NP -hard graph
modification problems. In several cases our automation framework in con-
junction with relatively simple problem-specific rules yielded the so far best
known upper bounds on search tree sizes for the corresponding problem.
Even if our setting did not always lead to the best known worst-case bounds,
however, it might be still considered scientific progress since it usually sig-
nificantly reduced the “proof complexity” of the corresponding search trees
when compared to the hand-made case distinctions. In this sense, our frame-
work helps to reveal the usually few “core rules” that lie at the very heart
of successfully attacking combinatorially hard problems. This may lead to a
better understanding of the considered problems and may smoothen the way
for new approaches in deriving smaller and smaller search tree sizes. Finally,
we have shown that it is feasible to apply the basic framework not only to
graph modification problems.

7.2 Open Problems and Challenges

Many things remain to be done.

Improvements of the framework. First, it would be very desirable to
extend our framework in order to directly translate the computed case dis-
tinctions into “executable search tree algorithm code” and to test the thus
implemented algorithms empirically.
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Our approach has two main computational bottlenecks: joining of (large
sets of) branching rules, and identifying the set of possible expanded windows
when adding a vertex. For the first problem, recent research indicates more
thorough comparison of branching vectors can keep the sets smaller; also
applying heuristics seems promising. Note that heuristics will not lead to
algorithms which are not exact or have unprovable exact search tree size
bounds; it will rather only possibly miss some better algorithm within the
set of considered algorithms.

The expansion step of finding all nonisomorphic graphs created by adding
a vertex to a window is implemented very naïvely in our framework, which
simply generates all possible expansions and then filters out isomorphic
graphs. Better techniques are known, and available for example in the nauty
library [McK90].

It seems like it would also be advantageous to not set a fixed limit for the
maximal size of an expanded window, but rather try to work with iterative
refinements of a starting algorithm, expanding further the windows which
mark the “weak point” of the algorithm. This could be combined with heuris-
tics for finding the branching rules for an expanded window, where we could
“try harder” for a certain window as soon as it marks the worst case. Unfor-
tunately, because there are usually several expansion methods for a window,
it is very hard to tell whether improvements could come rather from further
expansions, or rather from choosing a completely different expansion further
up the expansion tree.

As with most search tree based algorithms, parallelization to reduce the
high running times seems feasible.

Improvements for the considered problems. The possibilities of ap-
plying our framework to Cluster Editing and other graph modification
problems are far from exhausted; after all, the problem-specific rules ap-
plied can be described in a few lines. Obviously, trying to develop new
reduction and expansion rules may lead to improved search tree size bounds.
In combination with our problem kernel reduction rules, this might yield a
competitive algorithm for clustering. Eventually, we would like to test our al-
gorithms on real data and compare it to other implementations, for example
using the scoring framework by Gat-Viks, Sharan, and Shamir [GVSS03].

For most of the other considered graph modification problems, the ques-
tions for a problem kernel and a linear-time recognition method for the for-
bidden subgraph are still open.

Application to other problems. In addition, it is open to adapt our
approach to other graph problems besides the considered ones or, more gen-
erally, to other combinatorial problems. The approach seems to have the
potential to establish new ways for proving upper bounds on the running
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time of NP -hard combinatorial problems; we have already demonstrated
this with the NP -hard Dominating Set problem with a maximum vertex
degree of 3 in Sect. 5.3, and the application sketches in Sect. 5.5.1 and 5.5.2.

Another challenge is to use the automated framework in order to derive
proofs and case distinctions simple enough that they can be verified by hand.

7.3 Related Work

Independently from this work, Frank Kammer and Torben Hagerup (Augs-
burg) informed us about ongoing related work concerning machine-generated
proofs for upper bounds on hard combinatorial problems, such as Indepen-

dent Set or Maximum Satisfiability. Eventually, we note that Rob-
son [Rob01] also used the computer in order to improve the search tree of
his algorithm for Independent Set [Rob86]. However, his approach seems
very problem-specific and deals with special cases in his elaborate and exten-
sive case distinction. It does not result in a general automation framework
such as ours.

In recent work, Chen, Kanj, and Xia [CKX03] presented improvements
on the analysis of search tree sizes. They show with amortized analysis
how simple algorithms, if analyzed properly, may perform much better than
suggested by upper bounds on their running time derived by considering
only a worst-case scenario. They demonstrate this with a new analysis of an
algorithm for Vertex Cover on degree-3 graphs, which proves a running
time of O(1.194k + kn). Their approach does not provide better algorithms
per se, but may lead to them when applied in algorithm design. Combining
this approach with the automated algorithm design framework presented
here might yield algorithms with improved search tree sizes due to the more
precise selection of algorithms. It is not clear yet, though, how easy it is to
generalize the approach of Chen et al. to further problems.

Two groups from St. Petersburg State University recently considered au-
tomation approaches for finding search tree algorithms for satisfiability prob-
lems. Nikolenko and Sirotkin [NS03] provide automatically derived upper
bounds on the running time of propositional satisfiability (SAT) algorithms;
Fedin and Kulikov [FK03] study the (n, 3)-MaxSAT problem.
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