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Abstract

The k-Leaf Power recognition problem is a particular case of graph
power problems: For a given graph it asks whether there exists an un-
rooted tree—the k-leaf root—with leaves one-to-one labeled by the graph
vertices and where the leaves have distance at most k iff their correspond-
ing vertices in the graph are connected by an edge. Here we study “error
correction” versions of k-Leaf Power recognition—that is, adding or
deleting at most l edges to generate a graph that has a k-leaf root. We
provide several NP-completeness results in this context, and we show that
the NP-complete Closest 3-Leaf Power problem (the error correction
version of 3-Leaf Power) is fixed-parameter tractable with respect to
the number of edge modifications or vertex deletions in the given graph.
Thus, we provide the seemingly first nontrivial positive algorithmic results
in the field of error compensation for leaf power problems with k > 2. To
this end, as a result of independent interest, we develop a forbidden sub-
graph characterization of graphs with 3-leaf roots.

Key Words. NP-completeness, Fixed-parameter tractability, Graph al-
gorithms, Graph modification, Graph power, Leaf power, Forbidden sub-
graph characterization

1 Introduction

Graph powers are a classical concept in graph theory [2, Section 10.6] with
recently increased interest from an algorithmic point of view. The k-power of a
graph G = (V, E) is the graph Gk = (V, E′) with (u, v) ∈ E′ iff there is a path
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Figure 1: Leaf powers and leaf roots. The leaves of a leaf root stand in one-to-
one correspondence to the vertices of its leaf power.

of length at most k between u and v in G. We say G is the k-root of Gk and Gk

is the k-power of G; deciding whether a given graph is a power of some other
graph is called the graph power problem. It is NP-complete in general [27], but
one can decide in O(|V |3) time whether a graph is a k-power of a tree for any
fixed k [20]. In particular, it can be decided in linear time whether a graph is a
square (that is, a 2-power) of a tree [26, 22]. Lau [22] shows that it can be found
in polynomial time whether a graph is a square of a bipartite graph, but it is
NP-complete to decide whether a graph is a cube of a bipartite graph. Moreover,
Lau and Corneil [23] give a polynomial-time algorithm for recognizing k-powers
of proper interval graphs for every k and show that, contrariwise, recognizing
squares of chordal graphs and split graphs is NP-complete.

Here we concentrate on certain variants of tree powers. Whereas Kearney
and Corneil [20] study the problem where every tree node one-to-one corresponds
to a graph vertex, Nishimura, Ragde, and Thilikos [31] introduced the notion of
leaf powers where exclusively the tree leaves stand in one-to-one correspondence
to the graph vertices (see Figure 1). Motivated by applications in computational
biology, Lin, Kearney, and Jiang [25] and Chen, Jiang, and Lin [5] examine the
variant of leaf powers where all inner nodes of the root tree have degree at least
three. The corresponding algorithmic problems to decide whether a graph has
such a k-root are called k-Leaf Power recognition [31] and k-Phylogenetic

Root [25], respectively. For k ≤ 4, both problems are solvable in polynomial
time [31, 25]. The complexities of both problems for k ≥ 5 are still open.
Moreover, Chen, Jiang, and Lin [5] and Chen and Tsukiji [6] show that, under
the assumption that the maximum degree of the phylogenetic root is bounded
from above by a constant, there is a linear-time algorithm that determines
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whether a graph has a k-phylogenetic root (that is, a k-leaf root with minimum
degree three) for arbitrary k.

What to do if the given input graph has no k-leaf root? In particular, the
input graph might be “close” to having a k-root but due to certain “errors”
(as occur in many practical applications), the graph structure would need some
“correction” first before the computation of a k-leaf root is doable. This prob-
lem was already recognized by Kearney and Corneil [20], and they introduce
the Closest k-Tree Power problem. In this “error correction setting” the
question is whether a given graph can be modified by adding or deleting at
most l edges such that the resulting graph has a k-tree root. Unfortunately,
this problem turns out to be NP-complete for k ≥ 2 [20, 18]. One also obtains
NP-completeness for the corresponding problems Closest k-Phylogenetic

Root [5, 35] and, as we point out here, Closest k-Leaf Power.1 In addi-
tion, for Closest k-Leaf Power we study other edge modification problems—
namely, only to allow edge deletions or only to allow edge insertions—together
with the vertex deletion variant, and we show NP-completeness. See Table 1 in
Section 4 for an overview concerning classical complexity and hardness results
for Closest k-Leaf Power and its variants.

To the best of our knowledge, except for the “simpler” case k = 2 the above
error correction scenario so far only led to results showing hardness of complex-
ity no matter whether concerning closest tree powers, closest phylogenetic roots,
or closest leaf powers. We are not aware of any results concerning approxima-
tion or nontrivial exact algorithms. In contrast, we show the seemingly first
positive algorithmic results in this context, proving fixed-parameter tractability
with respect to the number l of edge modifications for Closest 3-Leaf Power

and all its variants mentioned above. To achieve our fixed-parameter results,
we develop a novel forbidden subgraph characterization of graphs that are 3-leaf
powers—a result that may be of interest on its own: A graph is a 3-leaf power iff
it is chordal and it contains none of the 5-vertex graphs bull, dart, and gem as
an induced subgraph (see Section 3 for details). A much simpler characteriza-
tion of graphs that are 2-leaf powers is already known by forbidding an induced
path of three vertices [34]. This characterization finds direct applications in
corresponding fixed-parameter algorithms [15] (fixed-parameter tractability is
also implied by a more general result of Leizhen Cai [3]), whereas our new char-
acterization of 3-leaf powers requires a more tricky approach. We mention in
passing that in a companion paper we show that Closest 4-Leaf Power is
fixed-parameter tractable [9]. The approach there is similar but the correspond-
ing forbidden subgraph characterization becomes much more complicated and,
therefore, causes a much increased algorithmic complexity.

1Note that both problems ask for the closest graph which is a leaf power resp. a phylogenetic
power. We find it more natural to use the term power instead of the term root here, although
we used the term root in previous works [7, 8].
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2 Preliminaries, Basic Definitions, and Previous

Work

We consider only undirected graphs G = (V, E) with n := |V | and m := |E|.
Edges are denoted as tuples (u, v). For a graph G = (V, E) and u, v ∈ V , let
dG(u, v) denote the length of the shortest path between u and v in G. With
E(G), we denote the edge set E of a graph G = (V, E). We call a graph G′ =
(V ′, E′) an induced subgraph of G = (V, E) if V ′ ⊆ V and E′ = {(u, v) | u, v ∈
V ′ and (u, v) ∈ E}. An edge between two vertices of a cycle that is not part of
the cycle is called chord. An induced, chordless cycle of length at least four is
called hole. A chordal graph is a graph that contains no hole. For two sets A
and B, A M B denotes the symmetric difference (A \ B) ∪ (B \ A).

We use the standard notations for special graphs: Pn for a path of n vertices
and Cn for a cycle of n vertices.

Closely related to the well-known graph power concept [2, Section 10.6] is
the notion of a k-leaf power of a tree, introduced by Nishimura, Ragde, and
Thilikos [31]:

Definition 1. For an unrooted tree T with leaves one-to-one labeled by the
elements of a set V , the k-leaf power of T is a graph, denoted T k, with T k :=
(V, E), where

E := {(u, v) | u, v ∈ V and dT (u, v) ≤ k}.

The tree T is called a k-leaf root of T k.

The following problem is inspired by forming a phylogenetic tree2 based on
a binary similarity measure.

k-Leaf Power recognition (LPk)

Instance: A graph G.

Question: Is there a tree T such that T k = G?

Nishimura et al. [31] show that k-Leaf Power recognition can be solved
in polynomial time for k ≤ 4. As already Nishimura et al. point out, in practice
phylogenetic problems involve errors in similarity estimators. This motivates
the following problem.

Closest k-Leaf Power (CLPk)

Instance: A graph G = (V, E) and a nonnegative integer l.

Question: Is there a tree T such that T k and G differ by at most l
edges, that is, |E(T k) M E(G)| ≤ l?

More precisely, this problem is denoted as CLPk Edge Editing. In this
paper we also study two variations, where the distance estimator is assumed to
have only one-sided errors:

2That is, a tree where leaves correspond to species and internal nodes represent evolutionary
events.
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• CLPk Edge Insertion: Only inserting edges into G is allowed to ob-
tain T k (that is, E(T k) ⊇ E(G));

• CLPk Edge Deletion: Only deleting edges from G is allowed to ob-
tain T k (that is, E(T k) ⊆ E(G)).

In addition, we examine the problem that considers deleting vertices instead
of edges.

• CLPk Vertex Deletion: Is there a tree T such that we can get T k by
deleting at most l vertices from G?

CLP2 Edge Editing has been studied under various names in the litera-
ture. The first proof of its NP-completeness is due to Křivánek and Morávek [21],
where it is called Hierarchical-Tree Clustering, later usually referenced
as Fitting Ultrametric Trees.

Independently, the problem is studied by Shamir, Sharan, and Tsur [34]
as Cluster Editing and by Bansal, Blum, and Chawla [1] as Correlation

Clustering. Charikar, Guruswami, and Wirth [4] show that there exists some
constant ε > 0 such that it is NP-hard to approximate Correlation Clus-

tering to within a factor of 1 + ε (that is, Correlation Clustering is
APX-hard).

CLP2 Edge Deletion (also known as Cluster Deletion) was shown
to be NP-complete by Natanzon [28]. Moreover, Shamir et al. [34] show that
Cluster Deletion is APX-hard.

Lin, Kearney, and Jiang [25] consider a variant of k-Leaf Power recogni-
tion where the inner nodes of the output tree are not allowed to have degree 2.
They call this problem k-Phylogenetic Root (PRk), and show that PRk
can be solved in linear time for k ≤ 4.3 As for leaf roots, the generalization
that allows for the input graph to contain errors is a better match for the bio-
logical motivation, and one can ask for the Closest k-Phylogenetic Root

(CPRk), defined analogous to Closest k-Leaf Power. CPRk is examined
by Chen, Jiang, and Lin [5], who show that it is NP-complete for k ≥ 2. Even
if the maximum degree of the k-root is bounded above by a constant, Closest

k-Phylogenetic Root is NP-complete [35].
Our positive algorithmic results appear in the context of parameterized com-

plexity [11]. The core concept herein is that of fixed-parameter tractable prob-
lems which we concretely define here in terms of the CLP3 problem: CLP3
is fixed-parameter tractable with respect to parameter l; that is, we show that
CLP3 can be solved in f(l) · nO(1) time, where f is an (exponential) function
only depending on l. Thus, we can confine the “combinatorial explosion” exclu-
sively to the parameter l. In this way for small l, as might be naturally expected
since l refers to the number of errors, efficient (polynomial-time) algorithms are
possible that provide optimal solutions. We refer to the literature with its by
now numerous surveys for more motivation and background concerning fixed-
parameter complexity [10, 13, 14, 30].

3For k = 4, they show this only for connected graphs.
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Figure 2: 5-vertex graphs that occur as forbidden induced subgraphs

3 Forbidden Subgraph Characterization for 3-

Leaf Powers

It is not hard to see that graphs that are 2-leaf powers are exactly the graphs
where every connected component is a clique. Shamir et al. [34] note that these
graphs are characterized by a forbidden induced subgraph, namely a path of
three vertices (P3). In this section we derive a similar, but far less evident
forbidden subgraph characterization of 3-leaf powers: they are chordal graphs
that contain no induced bull, dart, or gem (see Figure 2).

Forbidden subgraph characterizations can be valuable in various ways. We
describe three here.

First, they help with the recognition problem and lead to its polynomial-
time solvability in a straightforward way. Second, we also make use of them
for proving our NP-completeness results in the next section. Third, they can
lead to fixed-parameter algorithms for the corresponding graph modification
problems. Leizhen Cai [3] shows that with a finite set of forbidden subgraphs,
finding the l edges to be modified is fixed-parameter tractable with respect to l.
Using the single forbidden subgraph P3, this immediately applies to the case of
2-leaf powers; for 3-leaf powers, exploiting the subsequent forbidden subgraph
characterization is one of the decisive ingredients of the fixed-parameter algo-
rithms presented in Section 5. Note, however, that here Cai’s result does not
apply directly, since chordal graphs do not admit a characterization by a finite
set of forbidden subgraphs.

As we will see, 3-leaf powers are closely connected to the concept of a critical
clique, which was introduced by Lin et al. [25].

Definition 2. A critical clique of a graph G is a clique K where the vertices
of K all have the same set of neighbors in G \ K, and K is maximal under this
property.

Since between the vertices of two critical cliques either all pairwise or no
connections are present, the concept of a critical clique graph [25] comes up
naturally. As we will see, the structure of the critical clique graph is already
close to the structure of the 3-leaf roots we are looking for. For easier distinction
from the elements of G, we use the term nodes for vertices in the critical clique
graph.
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G

CC(G)

Figure 3: A graph G and its critical clique graph CC(G). Ovals denote the
critical cliques of G.

Definition 3. Given a graph G = (V, E). Let C be the collection of its critical
cliques. Then the critical clique graph CC(G) is a graph (C, EC) with

(Ki, Kj) ∈ EC ⇐⇒ ∀u ∈ Ki, v ∈ Kj : (u, v) ∈ E.

That is, the critical clique graph has the critical cliques as nodes, and two nodes
are connected iff the corresponding critical cliques together form a larger clique.

An example of a graph and its critical clique graph is shown in Figure 3.
Since every vertex of G belongs to exactly one critical clique, the critical clique
graph of G can be constructed in O(n · m) time by iterating through the ver-
tices and constructing the critical clique they are part of by comparing their
neighborhood to that of all adjacent vertices.

The following connection to 3-leaf powers can be shown:

Lemma 1. If a graph G is a 3-leaf power, then every clique in G contains
vertices of at most two critical cliques.

Proof. If two vertices of G are adjacent to the same inner node in a 3-leaf
root T of G, then they have identical neighborhood in G, since their distances
to other leaves in T are identical. Therefore, vertices from different critical
cliques cannot be adjacent to the same inner node of T . Thus, if a clique K
in G contains vertices of at least three critical cliques, the vertices of K must be
adjacent to at least three different inner nodes of T . Two of three inner nodes
in a tree have distance at least 2, which already yields a distance of 4 between
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their leaf children, contradicting the assumption that their leaf children are part
of K.

The following lemma shows that C4-free graphs with the critical clique struc-
ture that we just derived for 3-leaf powers can be characterized by a set of
forbidden subgraphs.

Lemma 2. For a C4-free graph G, the following are equivalent:

(1) There is a clique K in G that contains vertices from at least three critical
cliques.

(2) CC(G) contains a triangle.

(3) G contains a bull, dart, or gem (see Figure 2) as an induced subgraph.

Proof. (1) ⇒ (2): This follows directly from the definition of critical clique
graph.

(2) ⇒ (3): Consider three nodes in CC(G) that form a triangle and take one
vertex of each of the corresponding critical cliques in G. These three
vertices are pairwise connected by an edge and must have pairwise distinct
neighborhoods. We make a case distinction based on whether there exists
a non-common neighbor that is connected to exactly one of the three
vertices or not. For each case, we can get bull, dart, or gem in G.

(3) ⇒ (1): Assume that G contains a forbidden subgraph. Let u, v, w be the
vertices of a triangle in the forbidden subgraph (in the case of the gem,
the triangle which contains both degree-3 vertices). Then u, v, w form a
clique. Let x and y be the remaining two vertices in the subgraph. Since
each of u, v, w is adjacent to a different combination of x and y, they
belong to three different critical cliques.

Utilizing Lemmas 1 and 2, we can obtain the main theorem of this section.

Theorem 1. For a graph G, the following are equivalent:

(1) G has a 3-leaf root.

(2) CC(G) is a forest.

(3) G is chordal and contains no bull, dart, or gem as an induced subgraph.

Proof. (1) ⇒ (3): If G is a leaf power, then G must be chordal [25]. Then,
by Lemma 1 and Lemma 2, it does not contain any of the forbidden
subgraphs.

(3) ⇒ (2): If G is chordal, then so is CC(G), since if CC(G) contained a hole,
we could also find a hole in G by taking one arbitrary vertex from each
critical clique on the cycle. With Lemma 2, it follows that CC(G) is a
forest.
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Table 1: Complexity of Closest k-Leaf Power. The polynomial-time solv-
ability of CLP2 Edge Insertion is trivial; the results for k ≥ 3 are discussed in
Section 4. The main new result is NP-completeness of CLPk Edge Insertion

for k ≥ 3.

k = 2 k ≥ 3

Edge editing NP-complete [21] NP-complete
Edge deletion NP-complete [28] NP-complete
Edge insertion P NP-complete
Vertex deletion NP-complete [24] NP-complete [24]

(2) ⇒ (1): For each connected component of CC(G), construct a leaf root by
attaching to each node a new leaf node for each vertex of the corresponding
critical clique. Finally, create a new node and connect this node to an
arbitrary inner node of each newly constructed tree. Then the resulting
tree T is a 3-leaf root of G. To see this, consider two vertices u, v, u 6= v
of G. They are connected in G iff they are in the same critical clique, or
they are in two adjacent critical cliques. This is equivalent to the distance
of u and v in T being 2 and 3, respectively.

4 NP-Completeness Results

In Table 1 we summarize known and new results on the classical complexity (P
vs. NP) of Closest k-Leaf Power problems.

The NP-completeness of CLPk Edge Editing and CLPk Edge Deletion

for k ≥ 3 can be shown by a straightforward adaption of the NP-completeness
proof for CPRk by Chen et al. [5].

Theorem 2. CLPk Edge Editing and CLPk Edge Deletion are NP-
complete for k ≥ 3.

Note that this reduction also implies APX-hardness for CLPk Edge Edit-

ing and CLPk Edge Deletion.
CLP2 Edge Insertion can be trivially solved in linear time, since it is ex-

actly the problem of adding edges to a graph so that each connected component
becomes a clique.

We show in the following that for k = 3 CLPk Edge Insertion becomes
NP-complete by giving a reduction from Maximum Edge Biclique.

Maximum Edge Biclique

Instance: A bipartite graph G = (V1 ∪̇ V2, E), and a nonnegative
integer l.

Question: Does G contain a biclique with at least l edges, that
is, are there two sets A1 ⊆ V1, A2 ⊆ V2 with (v1, v2) ∈ E for all
v1 ∈ A1, v2 ∈ A2 and |A1| · |A2| ≥ l?
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G1 G̃1 G2 G̃2

x

V1 V1 V1 V1V2 V2 V2 V2

Figure 4: Forbidden subgraphs for bicliques (G1 and G2) and the results of their
transformation as described in the proof of Theorem 3 (G̃1 and G̃2). Note that
G̃1 and G̃2 are forbidden subgraphs for 3-leaf powers (Theorem 1).

Maximum Edge Biclique has been shown to be NP-complete by Peeters [32].
Consider the problem Biclique Deletion which asks for the least number of
edges to delete to make a bipartite graph a biclique (plus isolated vertices). Bi-

clique Deletion is clearly also NP-complete, since a solution for Maximum

Edge Biclique with l edges can be found by solving Biclique Deletion

with |E| − l deletions. The NP-completeness of CLP3 Edge Insertion can
now be shown by a reduction from Biclique Deletion. The key idea is to
exploit forbidden subgraph characterizations for both problems. The following
lemma is easy to observe.

Lemma 3. A bipartite graph G = (V1 ∪̇ V2, E) without isolated vertices is a
biclique iff it does not contain a 2K2 (G1 in Figure 4) or a P4 (G2 in Figure 4)
as an induced subgraph.

With Lemma 3, we show the NP-completeness of CLPk Edge Insertion

by giving a reduction from Biclique Deletion.

Theorem 3. CLPk Edge Insertion is NP-complete for k ≥ 3.

Proof. We show here only the NP-completeness of CLP3 Edge Insertion.
Using the same technique as employed in [5] for CPRk, we can also show the
NP-completeness of CLPk Edge Insertion with k > 3.

CLP3 Edge Insertion is clearly in NP. For a bipartite graph G = (V1 ∪̇
V2, E) which is an instance of Biclique Deletion, we assume, without loss of
generality, that G has no isolated vertices. Then, we construct G̃ by taking the
complement of G and adding a special vertex x which is connected to all other
vertices. Formally, G̃ = (V1 ∪̇ V2 ∪̇ {x}, Ẽ) with

Ẽ ={(u, v) | u, v ∈ V1 ∪ V2, (u, v) /∈ E}

∪{(x, v) | v ∈ V1 ∪ V2}.

Observe that G contains a 2K2 (P4) iff G̃ contains a C4 (gem), see Figure 4 for an
illustration. Furthermore, G̃ cannot contain a bull or dart, since it contains no
three independent vertices. Moreover, there is no hole of length greater than four
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in G̃, because such a hole would contain at least three nodes from either V1 or V2,
and these three nodes induce a clique. Based on this observation, the equivalence
between the solution of Biclique Deletion on G and the solution of CLP3

Edge Insertion on G̃ follows directly from Theorem 1 and Lemma 3.

The NP-completeness of CLPk Vertex Deletion for k ≥ 2 follows directly
from a result by Lewis and Yannakakis [24], who show that the vertex deletion
problem is NP-complete for any nontrivial hereditary graph property.

5 Fixed-Parameter Tractability Results for CLP3

In this section we show fixed-parameter tractability with respect to the number
of editing operations l for CLP3 Edge Insertion, CLP3 Edge Deletion,
CLP3 Edge Editing, and CLP3 Vertex Deletion. According to the char-
acterization of 3-leaf powers from Theorem 1, the algorithms have two tasks to
fulfill:

(1) Edit the input graph G to get rid of the forbidden subgraphs bull, dart, and
gem.

(2) Edit G to make it chordal.

Lin et al. [25] show the usefulness of the critical clique graph for the construc-
tion of the 3-leaf root (see also Section 3). The following lemma demonstrates
that the critical clique graph is also of crucial importance for our algorithms
solving CLP3: our algorithms modify the critical clique graph CC(G) instead
of G.

Lemma 4. There is always an optimal solution for CLP3 Edge Editing,
CLP3 Edge Deletion, or CLP3 Edge Insertion that is represented by
edge editing operations on CC(G). That is, one can find an optimal solution
that does not delete any edges within a critical clique; furthermore, in this opti-
mal solution, between two critical cliques either all or no edges are inserted or
deleted.

Proof. We consider here only CLP3 Edge Editing, but the same argumen-
tation holds for CLP3 Edge Deletion and CLP3 Edge Insertion. Ob-
serve that deleting an edge within a critical clique or inserting or deleting some
but not all edges between two critical cliques results in splitting one critical
clique in G into at least two critical cliques in the resulting graph G′, that is,
the vertices of a critical clique of G belong to different critical cliques of G′.
Thus, if we can construct an optimal solution for CLP3 Edge Editing on G
which splits no critical clique of G, then we have shown the lemma. Let Fopt

be an arbitrary optimal solution for CLP3 Edge Editing on G = (V, E),
and Gopt := (V, E M Fopt). If Fopt splits no critical clique of G, then we are
done; otherwise, for a critical clique K of G, there are at least two critical
cliques K1 and K2 in Gopt with KA

1 := K ∩ K1 6= ∅ and KA
2 := K ∩ K2 6= ∅.
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2 B0
2
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2B+
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Figure 5: Illustration of the proof of Lemma 4. Lines denote pairwise connec-
tions between vertex sets. Small circles denote vertex sets, ovals denote critical
cliques. Only connections having one end in KA

1 or KA
2 are displayed.

Let KB
1 := K1 \KA

1 and KB
2 := K2 \KA

2 . Note that KB
1 and KB

2 can be empty.
In the following we show the claim that there exists a solution which does not
split K and is at least as good as Fopt.

We use A1, . . . , Ar to denote the critical cliques in Gopt which are adjacent
to K1 but not to K2 and B1, . . . , Bs to denote the critical cliques which are
adjacent to K2 but not to K1. Furthermore, we partition the vertices of KB

1

into two sets of vertices: KB,0
1 whose vertices are adjacent to the vertices of K

in G, and KB,+
1 := KB

1 \KB,0
1 . The vertices of KB

2 , A1, . . . , Ar, and B1, . . . , Bs

are partitioned in the same way, see Figure 5. (Figure 5 shows the case that
there are no edges between K1 and K2 in Gopt.)

In order to show the claim, we transform at first Gopt to a graph G′ where K
is not split, see Figure 5. Due to the forest structure of CC(Gopt), it is easy
to observe that CC(G′) is also a forest and, therefore, G′ is a 3-leaf power.
Hence, the set of edge modifications F ′ which transforms G to G′ is a solution
of CLP3 Edge Editing on G. Observe that the roles of K1 and K2 in Figure 5
can be exchanged: we can also apply modifications such that KA

2 , KA
1 , KB,0

1 ,

and KB,+
1 form a critical clique in G′. Then, by simply counting the neighbors

of KA
1 and KA

2 in G and Gopt and taking the solution with the smaller number
of required edge modifications, we can always find an F ′ which is at least as
good as Fopt. This proves the claims. Repeatedly applying the claim to each
critical clique in G which is split by Fopt, we show the lemma.

Based on Lemma 4 and Theorem 1, we can now work on CC(G) instead
of G. Note that a modification on CC(G) can decrease the parameter l by more
than one. Then, our algorithm scheme is as follows:

(1) Construct CC(G) from G.
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(2) Edit CC(G) to make it a forest.

Note that after modifying CC(G), two or more nodes in CC(G) might obtain
identical neighborhoods. Since each node in CC(G) has to represent a critical
clique in G, a merge operation is needed, which replaces these nodes in CC(G)
by a new node with the same neighborhood as the original nodes. Therefore,
in the following we assume that after each modification operation, we check for
every pair of nodes whether a merge operation between them is possible, which
can be done in O(n · m) time.

We now examine the running time of the respective steps. As mentioned in
Section 3, CC(G) can be constructed in O(n ·m) time. In order to make CC(G)
a forest, we have to destroy all cycles in it. A shortest cycle can be found
in O(n ·m) time [17]. This cycle can be destroyed by either deleting at least one
edge of this cycle or triggering a merge operation for two nodes on this cycle.
Recall that two nodes can be merged iff they are adjacent and they have the
same neighborhood. Thus, in order to merge two nodes Ki and Kj, we have to
insert an edge between them if they are not already adjacent; furthermore, we
need to delete or insert edges such that Ki and Kj have the same neighborhood.
We employ a search tree which finds a shortest cycle and branches into several
cases corresponding to each editing operation that destroys it. Note that each
case decreases the parameter l by at least one. In the descriptions of the re-
spective algorithms, we now only need to show that the number of the cases
corresponding to the editing operations is bounded by a function of l. This
implies the fixed-parameter tractability.

As shown in the proof of Theorem 1, if CC(G) has more than one connected
component, we can solve the problem for each component independently, and
then connect the generated leaf roots by adding a new inner node and connecting
it to an arbitrary inner node of each leaf root. This allows us in the following
without loss of generality to only consider connected graphs. Note that this
property does not hold for Closest k-Phylogenetic Root, which makes it
considerably harder to obtain analogous results.

5.1 Edge Deletion

As stated above, the task of Step (2) is to transform CC(G) into a forest by
edge deletions. The following lemma enables us to consider only triangles.

Lemma 5. For a triangle-free critical clique graph CC(G), we can find an
optimal solution for CLP3 Edge Deletion by finding a maximum weight
spanning tree for CC(G), where edges are weighted by the product of the sizes
of the critical cliques corresponding to their two endpoints.

Proof. By Lemma 4, there is an optimal solution which can be described by
edge deletions in CC(G). Disconnecting two critical cliques of sizes s1 and s2

requires s1 · s2 edge deletions. Furthermore, since CC(G) contains no triangle,
a merge operation between two nodes in CC(G) can only be triggered if the two
nodes form an isolated component. However, for a connected CC(G) with more
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than two nodes, no optimal solution of CLP3 Edge Deletion can produce
an isolated component of two nodes. Thus, no merge operation is needed in
Step (2). Therefore, a spanning tree with maximum edge weights implies a
minimum number of edge deletions to obtain a tree from CC(G).

With Lemma 5, we can show that each inner node of the search tree has at
most six cases to branch.

Theorem 4. CLP3 Edge Deletion with l edge deletions allowed is fixed-
parameter tractable with respect to l.

Proof. We employ a search tree of height bounded by l. In each inner node of
the search tree, we find a triangle in O(nm) time and branch into at most six
cases corresponding to the deletions of the three edges of the triangle and the
merging of the three pairs of nodes of the triangle. Note that since only edge
deletions are allowed, we can trigger a merge between two nodes Ki and Kj only
by deleting edges to make all non-common neighbors of Ki and Kj nonadjacent
to both of Ki and Kj . At each leaf of the search tree, we find a maximum
weight spanning tree in O(m log n) time. In summary, we have a running time
of O(6l · nm).

5.2 Edge Insertion

To show that CLP3 Edge Insertion is fixed-parameter tractable, we again
use a bounded search tree that modifies CC(G) to be a tree. If CC(G) is already
a tree, then no edge insertion is required. For a CC(G) containing at least one
cycle, the only possible way to make it a tree by edge insertions is to trigger
a merge operation for two nodes on this cycle. Our search tree algorithm tries
all possible pairs of nodes to merge in a cycle. To obtain the desired runtime
bound, it suffices to determine an upper bound for the length of a cycle in CC(G)
that depends only on l. We achieve this by giving a connection between the
triangulation of a hole and the merge operations that turn a cycle into a tree.

A triangulation of a hole C = (VC , EC), where VC denotes the set of the
vertices on this cycle and EC the set of the edges, is a set D of chords of C such
that there is no hole in C′ = (VC , EC ∪ D). A triangulation F of a graph G is
minimal if no proper subset of F triangulates G.

Lemma 6. Each set of edges inserted into a cycle C of a critical clique graph
to transform C into a tree is a triangulation of C.

Proof. We prove the lemma by contradiction. Suppose that we have a set of
edges D with which cycle C = (VC , EC) can be made a tree by merge operations,
but there is a hole C′ in C = (VC , EC ∪D). Since all pairs of the nodes on C′ are
either not connected by an edge or have at least two neighbors not in common,
none of them can be merged with other nodes on C′. This is a contradiction to
the assumption that C can be made a tree by inserting the edges in D.
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Kaplan, Shamir, and Tarjan [19] show that a minimal triangulation of an
n-cycle consists of n − 3 chords, which implies that a graph that can be tri-
angulated by at most l edge insertions cannot have a chordless cycle of length
more than l + 3. This is also the key idea of one of their fixed-parameter algo-
rithms for Minimum Fill-In, which is the problem to make a graph chordal by
edge insertions. With Lemma 6, we conclude that the maximum cycle length
of CC(G) is bounded above by l + 3; otherwise, there is no solution to CLP3

Edge Insertion using only l insertion operations.
Altogether, we get the following theorem.

Theorem 5. CLP3 Edge Insertion on a graph G with l edge insertions
allowed is fixed-parameter tractable with respect to l.

Proof. As already mentioned, we can easily find a shortest cycle (if there is any)
in O(m ·n) time [17]. If this cycle has length greater than l +3, then there is no
solution; otherwise, we make an O((l + 3)2)-branching: each branch represents
the merge of a pair of nodes on this cycle, and there are at most (l+3)2 such node
pairs. After each merging of two nodes, there can be at most two new shorter
cycles. Since there are at most l edge insertions allowed, such an O((l + 3)2)-
branching can be made at most l times. We obtain an O((l +3)2l ·nm) running
time.

Note that with a modified case distinction, we can improve the branching
for getting rid of cycles with length at most l + 3 to a (l + 3)-branching such
that the overall running time is O((l + 3)l · nm):

Instead of trying all possibilities to merge two nodes of a cycle, we choose
an arbitrary node Ki of the cycle. In order to triangulate the cycle, we either
have to merge Ki with at least one of the l + 2 other nodes of the cycle, or we
have to merge the two neighbors of Ki. The correctness of this claim is given
by the following lemma.

Lemma 7. Let v be a vertex on a hole C and let u and w be its neighbors
in C. Each triangulation of C either connects v to at least one vertex of C, or
it connects u and w.

Proof. Suppose there is a triangulation of C which neither connects v to a vertex
of C nor connects u and w.

Let P be the shortest path between u and w after the triangulation that
consists only of vertices of C, but does not contain v. Since u and w are not
connected by an edge after the triangulation, at least one vertex lies on P
between u and w. Because P is the shortest path between u and w and because
no vertex of P except u and w is connected with v, there is a hole consisting of v
and the vertices of P , which contradicts the assumption that C is a triangulation.

5.3 Edge Editing

In this section we extend the algorithm for CLP3 Edge Insertion from Sec-
tion 5.2 to solve CLP3 Edge Editing by additionally taking edge deletions
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into account. We distinguish two types of cycles: the short cycles having length
at most l + 3, and the long cycles having length greater than l + 3.

We can destroy a short cycle in CC(G) by deleting at least one edge from it,
or by merging some critical cliques. This means we have at most l + 3 possible
edge deletions and at most (l + 3)2 possible merge operations. However, merge
operations with both edge deletion and edge insertion are more complicated
than merge operations with only edge insertion. Suppose that we merge a pair
of critical cliques Ki and Kj on a cycle. As with only edge insertions allowed, we
insert an edge between Ki and Kj if they are not adjacent. There may be some
critical cliques which are neighbors of Ki but not of Kj or vice versa. To satisfy
the neighborhood condition of a critical clique, for each of these neighbors which
are not common to Ki and Kj, we have to either insert at least one edge to
make it a common neighbor of both critical cliques, or delete at least one edge
to make it nonadjacent to both critical cliques. However, there may be at most l
such non-common neighbors, since there are at most l edge editing operations
allowed. A merge operation between Ki and Kj is then possible only if they
have at most l non-common neighbors. Thus, we have at most 2l different ways
to merge these two critical cliques. Altogether, we now have (l+3)+(l+3)2 ·2l

branchings to transform a short cycle into a tree.
For long cycles, with the discussion in Section 5.2, the following observation

is easy to prove:

Observation 1. A long cycle in CC(G) cannot be transformed into a tree solely
by edge insertions.

Therefore, we have to delete at least one edge on a long cycle. Furthermore,
we can show that for such long cycles no edge insertion is necessary.

Lemma 8. In order to solve CLP3 Edge Editing on a graph with only long
cycles, there is no need to insert any edges.

Proof. Suppose that we have an optimal solution F , that is, a set of some
edge editing operations, for a graph G with only long cycles, and that there
is at least one edge insertion in F . With Observation 1, we know that F also
contains at least one edge deletion. We perform only the edge deletions from F
in G. If the resulting graph has no cycles, then there is a contradiction to the
optimality of F ; otherwise, the cycles in the resulting graph are long cycles.
By Observation 1, we cannot make the resulting graph a tree solely by edge
insertions, which is a contradiction to the fact that F is a solution. Then, there
is no edge insertion in F .

Theorem 6. CLP3 Edge Editing on a graph with l edge editing operations
allowed is fixed-parameter tractable with respect to l.

Proof. As already stated in the introduction of Section 5, the algorithm uses the
l+3+(l+3)2 ·2l-branching to get all solutions which destroy the short cycles by
at most l edge editing operations. Finally, a maximum weight spanning forest
is constructed for each resulting graph which has no short cycle.
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Again, with a slight modification of the algorithm we can improve the
branching for getting rid of short cycles. More precisely, we get a (l +3+ l +5)-
branching such that the overall running time is O((2l + 8)l · nm).

First, we use the same idea as in Section 5.2: Instead of considering every
pair of nodes of a short cycle for a merging operation, we choose an arbitrary
node of the cycle and try the l +3 possibilities to merge this node with another
node of the cycle or to merge its two neighbors on the cycle.

The second idea is rather a refined analysis than a modification of the algo-
rithm: Instead of branching into up to 2l cases for merging two nodes Ki, Kj

(and decreasing the parameter l by the number of their non-common neighbors),
we only connect Ki and Kj by an edge (without merging them immediately) if
they are not already connected. If, however, Ki and Kj are adjacent, we con-
sider one non-common neighbor of Ki and Kj. In order to merge Ki and Kj ,
we have to either insert or delete an edge between this neighbor and one of Ki

and Kj .
Altogether, in order to destroy a short cycle we have at most l+3 possibilities

to delete an edge of the cycle and at most l + 5 possibilities to modify an edge
in order to merge two nodes of the cycle.

5.4 Vertex Deletion

We first show that the property from Lemma 4 holds analogously for the vertex
deletion problem.

Lemma 9. All optimal solutions for CLP3 Vertex Deletion can be repre-
sented by node deletions on CC(G). That is, if one vertex in a critical clique is
deleted, then all vertices in the critical clique are deleted.

Proof. This lemma is proven by contradiction. Assume that we have an optimal
solution Fopt ⊆ V on G = (V, E) that deletes some but not all vertices from
a critical clique K in G. Let G′ be G modified by Fopt, that is, G′ = (V ′, E′)
where V ′ := V \ Fopt and E′ := E ∩ (V ′ × V ′). We construct G′′ from G′

by putting back a deleted vertex from K. That is, we choose v ∈ (K \ V ′)
and u ∈ (K ∩ V ′), which exist by the assumption, and define G′′ = (V ′′, E′′)
where V ′′ := V ′ ∪ {v} and E′′ := E ∩ (V ′′ × V ′′). Since two vertices having the
same neighbors in G have also the same neighbors in any induced subgraph of G,
u and v must belong to the same critical clique in G′′. Thus, CC(G′′) has the
same structure as CC(G′), i.e., it is a forest, which implies that F ′ := Fopt \ {v}
is a solution. This is a contradiction to the optimality of Fopt.

We use a similar approach to solve CLP3 Vertex Deletion as for the edge
deletion variant: For an input graph G, if its critical clique graph CC(G) is a
forest, then we can easily construct a 3-leaf root as described in Section 3. Oth-
erwise, CC(G) contains some cycles. Due to Lemma 9, for each cycle in CC(G),
we have to delete at least one critical clique on this cycle completely, that is,
delete all vertices in this critical clique from G. As in the edge deletion case,
the search tree algorithm first considers the triangles in CC(G), for which there
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are clearly only six cases to branch. Furthermore, solely with vertex deletions,
we cannot create any triangle in a triangle-free CC(G). Hence, if CC(G) is
triangle-free, a merge operation can only occur for two critical cliques which
form an isolated component, and can be done after we convert CC(G) into a
forest. If we give each critical clique a weight equal to its size, the problem to
transform a triangle-free CC(G) into a forest by node deletions can be stated
as a weighted version of the Undirected Feedback Vertex Set problem,
which seeks in an undirected graph for a set of at most l vertices whose removal
destroys all cycles in the graph. Here we want a set of vertices with the sum of
weights at most l. Raman et al. [33] give a fixed-parameter algorithm solving
the unweighted version, which is based on the following classical result of Erdős
and Pósa [12].

Lemma 10. Any graph with minimum degree at least 3 has a cycle of length at
most 2 log n + 1.

While in the unweighted case we can simply ignore the degree-2 nodes, a
degree-2 node with low weight can be relevant in the weighted case. However,
we can apply the following data reduction rule to CC(G): We omit from two
consecutive degree-2 nodes the one with higher weight, and connect its two
neighbors. This data reduction can be clearly done in linear time. Then be-
tween two nodes with degree at least 3 there is at most one degree-2 node. By
Lemma 10, there is a cycle in CC(G) of length at most 4 log n+ 2. We then use
the greedy strategy described by Raman et al. [33] to destroy this cycle, that
is, we make an O(4 log n)-branching; each branch represents the deletion of one
node on this cycle. Since this branching can be done at most l times, we obtain
a bounded search tree of size O((4 log n)l). Since (log n)l ≤ (3l log l)l + n for
all n and l, we have then a fixed-parameter algorithm for the weighted case.

Theorem 7. CLP3 Vertex Deletion with l vertex deletions is fixed-parameter
tractable with respect to l.

6 Concluding Remarks

Our algorithmic results fall into the broad category of complexity of graph
modification problems [3, 24, 28, 29].

The line of research initiated in our work offers several future challenges. We
only mention four points.

• It remains open to provide a non-trivial reduction to a problem kernel [14,
30] for Closest 3-Leaf Power.

• Also open is the problem of finding good polynomial-time approximation
algorithms for Closest 3-Leaf Power.

• One challenge is to investigate whether similar fixed-parameter tractability
results can be achieved for the closely related phylogenetic root problems
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studied in [5, 25]. Forbidding degree-2 nodes there in the output trees
seems to make things more elusive, though.

• From a more applied point of view, it would be interesting to see how small
the combinatorial explosion in the number of modifications can be made
for CLP3 and its variants. Encouraging results for the “simpler” but still
NP-complete Closest 2-Leaf Power problem are obtained in [15, 16]
(where the problem is referred to as Cluster Editing).

Moreover, our algorithms for the edge editing, edge insertion, and vertex
deletion variants require to know the number of modifications l in advance,
whereas the algorithm for the edge deletion variant finds an optimal solu-
tion even without this knowledge. It would be interesting to see whether
we can find fixed-parameter algorithms for the first three variants with
this desirable property.

We recently obtained similar positive results for the most difficult k-leaf
power problem with known polynomial-time solvable recognition problem: CLP4.
More specifically, we found a forbidden subgraph characterization for 4-leaf pow-
ers and fixed-parameter algorithms for CLP4 [9]. As long as it remains open to
determine the complexity of k-Leaf Power recognition for k > 4, it seems to
make little sense to study the more general Closest k-Leaf Power for k > 4.
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[12] P. Erdős and L. Pósa. On the maximal number of disjoint circuits of a
graph. Publicationes Mathematicae Debrecen, 9:3–12, 1962. 18

[13] M. R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions
in FPT. In Proc. 29th International Workshop on Graph-Theoretic Con-
cepts in Computer Science (WG ’03), volume 2880 of LNCS, pages 1–12.
Springer-Verlag, Berlin, 2003. 5

[14] M. R. Fellows. New directions and new challenges in algorithm design
and complexity, parameterized. In Proc. 8th International Workshop on
Algorithms and Data Structures (WADS ’03), volume 2748 of LNCS, pages
505–520. Springer-Verlag, Berlin, 2003. 5, 18
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