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Abstract

Multiple pairwise comparisons are one of the most frequent tasks in applied statis-
tics. In this context, letter displays may be used for a compact presentation of results
of multiple comparisons. A heuristic previously proposed for this task is compared
with two new algorithmic approaches. The latter rely on the equivalence of comput-
ing compact letter displays to computing clique covers in graphs, a problem that
is well-studied in theoretical computer science. A thorough discussion of the three
approaches aims to give a comparison of the algorithms’ advantages and disadvan-
tages. The three algorithms are compared in a series of experiments on simulated
and real data, e.g., using data from wheat and triticale yield trials.

Key words: multiple pairwise comparison, line display, NP-hard problem, graph
problem, clique cover, efficient algorithm

1 Introduction

Multiple testing procedures continue to receive much attention in the sta-
tistical literature (Hochberg and Tamhane, 1987; Shaffer, 1995; Hsu, 1996).
Multiple pairwise comparisons among all pairs in a set of n treatments are a
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Fig. 1. (a) Line display for Example 1. (b) Letter display for Example 2. (c) Letter
display for Example 1. Treatments connected by a common line (a) or having a
common letter (b, c) are not significantly different.

common task in routine analyses based on analysis of variance (ANOVA) tech-
niques (Hsu, 1996). Typically, the quantities of interest are treatment means,
but multiple comparisons may also be applied to other statistics such as vari-
ances, quantiles, and estimates of entropy or biodiversity (Rogers and Hsu,
2001; Piepho, 2004). For multiple comparisons of means in a balanced ANOVA
setting it is common to use a line display or letter display representing signif-
icant differences. These two types of display will now be briefly explained.

Assume that we are comparing five treatments T1, . . . , T5. The comparison
of T1 and T5 is significant, while all other comparisons are non-significant
(Example 1). This can be conveyed by the line display (Steel and Torrie, 1980;
Sokal and Rohlf, 1995; Clever and Scarisbrick, 2001) shown in Figure 1 (a).

An important feature of a line display is that all pairwise comparisons among
treatments connected by a common line must be non-significant. Using an
example, Piepho (2000) could show that it is not always possible to truthfully
represent all statements of significance by a line display. Thus, he suggested
the letter display as a generally applicable method (Piepho, 2004).

For a given set of n treatments and a set H of m pairwise comparisons
where {Ti, Tj} ∈ H if and only if the treatments Ti and Tj are significantly
different, a letter display is a matrix M with n rows, one row for each treat-
ment, which satisfies the following three conditions: (1) Each column contains
a different letter and all non-empty entries of one column contain the same
letter. (2) Every row has at least one non-empty entry. (3) Two treatments
differ significantly if and only if the corresponding two rows of M contain no
common letter. We call each non-empty entry of M a letter occurrence. For the
sake of convenience, we say that a matrix M satisfying these three conditions
displays H .

To illustrate a letter display, consider the case of five treatments T1, . . . , T5

with the following significant comparisons: H := {{T1, T5}, {T1, T3}, {T2, T4}}
(Example 2). A letter display for this example is shown in Figure 1 (b).

It is important to note that a line display can always be converted to a letter
display, and this is usually done in practice. The conversion is achieved by
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replacing each line by a different letter. For Example 1 this yields the display
given in Figure 1 (c). Conversely, it is not generally possible to convert a
letter display into a line display. This is the case for Example 2. As it stands
(Figure 1 (b)), only the letters b and c can be replaced by lines, while the
columns for a and d show gaps and thus cannot be replaced by lines. It is
sometimes possible to remove gaps by permutation of treatments (Piepho,
2000), but for Example 2 this is not possible. Thus, a line display is not
generally feasible, while a letter display can always be devised.

For the sake of simplicity, we refer to the treatments only by their indices
and equivalently consider letter displays as binary matrices which have entries
“1” and “0” only, where a “1”-entry represents a letter occurrence and “0” is
used to represent an empty entry. Clearly, there are only two conditions to be
satisfied by a binary matrix for the purpose of displaying pairwise comparisons:
(1) Each row has to contain at least one “1”-entry. (2) Two treatments have
significantly different means if and only if there is no column in which the
rows corresponding to the two treatments have “1”-entries.

Obviously, for a given set H of pairwise differences there can be several matri-
ces M that display H . Among these possible letter displays we want to choose
one that is as easy to perceive as possible. This may be achieved by meeting
at least one of the following two goals: (1) minimizing the number of columns,
and (2) minimizing the number of 1s in the letter display matrix. These two
optimization criteria are specified by the following problem definition:

Compact Letter Display (CLD)
Input: A positive integer n and a set H of m unordered pairs of integers
where H = {{i1, j1}, {i2, j2}, . . . , {im, jm}} with 1 ≤ ir, jr ≤ n and ir 6= jr

for all r = 1, . . . , m.
Objective of CLD-C: Find a binary matrix with minimum number of
columns that displays H .
Objective of CLD-Σ: Find a binary matrix with minimum number of
“1”-entries that displays H .

In situations where we address both objectives, we will refer to the problem
as CLD. We use the term “nsd” (not significantly different) for pairs of treat-
ments that are not in H .

For balanced data, line displays are readily available in most packages (SAS,
SPSS, etc.), and such displays are often converted to letter displays for ease
of presentation. By way of contrast, until recently such displays have not been
available for unbalanced data. The new SAS procedure GLIMMIX produces a
line display for unbalanced data, but this is not guaranteed to truthfully rep-
resent all significances; some significances may have to be suppressed. Piepho
(2004) suggested a heuristic method to derive a letter display with respect to
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the first optimization goal, i.e., to solve CLD-C. Here, we present two further
methods for CLD-C. The methods considerably improve upon the method
by Piepho (2004) in terms of computational efficiency and of economy of
columns. In particular, while Piepho’s approach is purely heuristic without
guarantees on the quality of the solution, one of our new algorithms provides
a provably optimal solution in terms of the number of columns that are needed.
Our new methods rely on the equivalence of CLD-C and a well-known problem
from graph theory, namely the problem of computing a so-called clique cover
for a graph (see Conforti and Hochberg (1987) for an early example for using
graph theory in the context of multiple comparisons). While the alternative
methods have been described before in terms of graph theory, as one of our
contributions, we present them here in their application to computing letter
displays, thus making them more accessible to an audience interested in this
application. Moreover, to solve CLD-Σ, we complement these methods with a
problem-specific postprocessing introduced by Piepho (2004). We compare the
algorithms based on their theoretical analysis. Most importantly, we present
a set of experiments with real and simulated data that illustrate the differ-
ences between the approaches and thus provide concrete recommendations for
statistical applications.

The paper is structured as follows. In Section 2, we briefly review the method
by Piepho (2004) and present an overview of the two alternative approaches.
This section also contains a thorough discussion of the three approaches, com-
paring their advantages and disadvantages from a theoretical point of view.
We evaluate the algorithms experimentally in Section 3 and close with some
conclusions in Section 4.

2 Algorithms for Compact Letter Display

In this section, we give an overview on computational complexity theory and
then review three algorithms for computing compact letter displays under this
aspect. All of them aim at computing a valid solution matrix with a minimum
number of columns (the optimization criterion of CLD-C). In Section 2.6 we
additionally describe Sweeping, a post-processing step aimed at minimizing the
number of 1s in the solution matrix (the optimization criterion of CLD-Σ).
Sweeping can be combined with any of the three algorithms.

To simplify the presentation, we sometimes treat a column of a letter display
as a set of treatments, which is then the set of all treatments i for which the
column has a 1 in row i.
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2.1 Computational Complexity Theory

Determining the computational complexity of problems is a key issue in the-
oretical computer science. It is crucial to distinguish between problems that
can be solved efficiently and those that presumably cannot. To this end, the-
oretical computer science has coined the notions of polynomial-time solvable

on the one hand and NP-hard on the other hand (Garey and Johnson, 1979;
Papadimitriou, 1994). In this sense, polynomial-time solvability has become a
synonym for efficient solvability. This means that for an input instance of a
problem of “size” n an optimal solution can be computed in at most nc com-
putation steps, where c is some constant. By way of contrast, the unproven (!)
working hypothesis of theoretical computer science is that NP-hard problems
cannot be solved in nc steps for any constant c. More specifically, typical run-
times for NP-hard problems are of the form 2n or even worse; that is, we have
an exponential growth of the number of computation steps.

As there are thousands of practically important NP-hard optimization prob-
lems (Papadimitriou, 1997) (one of which we will also encounter in this work),
several approaches have been developed that try to circumvent the assumed
computational intractability of NP-hard problems. One such approach is based
on polynomial-time approximation algorithms, where one gives up looking
for optimal solutions in order to have efficient algorithms. In other words,
one is satisfied with a provably approximate solution that can be found in
polynomial time (Ausiello et al., 1999; Vazirani, 2001). Fixed-parameter al-
gorithms (Niedermeier, 2006) are another way of coping with computational
intractability. Optimally solving NP-hard problems implies an “explosion” of
the required time. The idea of fixed-parameter algorithms is to restrict this
seemingly unavoidable combinatorial explosion to a “small part” of the input,
the parameter, so that the given NP-hard problems can be solved efficiently
as long as the parameter is small. Another commonly employed strategy is
that of heuristics, where one gives up any provable performance guarantees
concerning runtime and/or solution quality by developing algorithms that
“usually” behave well in “most” practical applications. Since there may be
no useful alternatives, this is sometimes the best one can do (Pearl, 1984;
Michalewicz and Fogel, 2005).

2.2 Equivalence of Compact Letter Displays and Clique Cover

The Clique Cover problem, also known as Keyword Conflict prob-
lem (Kellerman, 1973) or Covering by Cliques (Garey and Johnson, 1979)
or Intersection Graph Basis (Garey and Johnson, 1979), has applications
in diverse fields of computer science. In this section, we show that Compact
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Fig. 2. Equivalence of CLD-C and Clique Cover: Consider the CLD-C instance
with n = 5 and H = {{1, 5}, {2, 3}, {2, 5}, {3, 5}}. This instance can be translated
into the graph G = (V,E) with V = {1, 2, 3, 4, 5} and E = {{1, 2}, {1, 3}, {1, 4},
{2, 4}, {3, 4}, {4, 5}}, shown in (a): Treatments correspond to vertices in the graph,
and two vertices i and j are connected iff {i, j} is not in H. In (b) we give a letter
display for H and in (c) the corresponding clique cover: Columns in the letter display
correspond to cliques in the graph where the “1”-entries of the column determine
the set of vertices in the corresponding clique.

Letter Display-C is equivalent to Clique Cover. This has two important
implications: Like Clique Cover, CLD-C is NP-hard (see Section 2.1); and
we can transfer solving methods from Clique Cover to CLD-C as demon-
strated in Sections 2.4 and 2.5.

Clique Cover
Input: An undirected graph G = (V, E).
Objective: Find a smallest possible set of cliques in G such that each edge
in E has both its endpoints in at least one of the selected cliques. Here, a
clique in a graph is a set of vertices such that every pair of vertices in this
set is connected by an edge.

We establish the following correspondences between a CLD-C instance and a
Clique Cover instance (see Figure 2 for an example):

• Treatments or rows of the letter display correspond to graph vertices;
• Pairs of nsd treatments correspond to edges, that is, the elements of H

correspond to non-edges;
• Letter display columns correspond to cliques in the clique cover.

It is then not too hard to see that, with these correspondences, a solution
for Clique Cover implies a solution of the same size for the correspond-
ing CLD-C instance, and vice versa. Special handling is only required for
treatments significantly different from all other treatments (corresponding to
vertices with no edges attached): they require a letter display column, but no
clique is needed to cover them in the given problem formulation. This is easily
accounted for by a straightforward preprocessing step.
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2.3 Insert-Absorb Heuristic

The Insert-Absorb heuristic is a method for solving CLD-C (Piepho, 2004).

Algorithm. The idea is to start with a letter display with only one column
and all entries set to 1, that is, considering all treatments as nsd. Then this
letter display is successively updated by taking pairs of significantly different
treatments into account. Once all pairwise differences from H are processed,
we obtain a correct letter display. The update of the letter display consists of
two steps, insertion and absorption.

The insertion step updates a letter display with an additional significant dif-
ference between treatments i and j. A column having 1-entries both in rows i
and j violates the conditions of a correct letter display. Therefore, each of
these columns is duplicated; in one of its copies entry i is flipped to 0, and in
the other copy entry j is flipped to 0. The resulting matrix is a correct letter
display for the set of pairwise differences augmented by {i, j}.

The insertion step frequently creates redundant columns. In an absorption

step, we compare each new column against all old columns to determine
whether it is absorbed by one of the old columns. An old column absorbs
the new column if it has a 1 in every row in which the new column has one.
Every absorbed column is deleted. It is easy to see that absorbed columns are
in fact redundant and that we obtain a correct letter display.

Notably, the order of processing the pairwise differences does not influence
the conformation of the resulting letter display (a proof is given by Schmid
(2005)).

Analysis. Unfortunately, the Insert-Absorb heuristic has an exponential
worst-case runtime: There are inputs on which the Insert-Absorb heuristic
requires at least 2n/2 · n2/2 steps for n treatments and n/2 pairwise differ-
ences. An example of this is given by considering the Insert-Absorb heuristic
for the input n = 6 and H = {{1, 2}, {3, 4}, {5, 6}}. The matrices produced
when processing the single pairs of H by the Insert-Absorb heuristic are given
as follows:

1 1

2 1

3 1

4 1

5 1

6 1

{1,2}→
1 0

0 1

1 1

1 1

1 1

1 1

{3,4}→
1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

1 1 1 1

1 1 1 1

{5,6}→

1 2 3 4 5 6 7 8

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1
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The exponential runtime dependency is given by the term 2n/2: e.g., 32 for
n = 10, 33 554 432 for n = 50, and already 1018 for n = 120, which is not
feasible to compute. The fact that for some inputs the Insert-Absorb heuristic
produces auxiliary matrices with 2n/2 columns stands in sharp contrast to the
observation that every input has a solution matrix with at most n2 columns.
Moreover, we have no (non-trivial) provable guarantee on the quality of the so-
lutions returned by the heuristic; that is, we do not know how far the produced
letter display is away from an optimal one. For these reasons, we introduce
two alternative approaches to compute letter displays.

2.4 Clique-Growing Heuristic

In this section, we review a novel heuristic for CLD-C that is based on the
equivalence between CLD-C and Clique Cover.

While the heuristic, which we call “Clique-Growing”, was originally described
in terms of graph theory (Kellerman, 1973; Kou et al., 1978), we present it
here as a method of constructing letter displays.

Algorithm. Like the Insert-Absorb heuristic described before, the Clique-
Growing heuristic starts with a trivial letter display and then successively
takes the input information into account and adapts the matrix accordingly:
it processes the treatments in some fixed order and accounts for all differences
of a treatment t to already processed treatments by either adding t to existing
columns, or opening new columns (recall that, for simplicity, we occasionally
treat a column as a set of treatments).

We start with a matrix with no columns and successively, for i = 1, . . . , n,
update the matrix to account for the pairwise differences between treatment i
and treatments j with j < i. More specifically, for each treatment j with j < i
and {i, j} /∈ H , the updated matrix contains a column C with {i, j} ⊆ C.
If i is significantly different from every treatment in T , the only possibility is
to add a new column containing only i. Otherwise, we add i to every column
where this is possible, that is, where all treatments contained in this column
are nsd to i. There might remain a set of treatments W ⊆ T that are nsd to i
and for which this fact is still not represented in the matrix. For these, we
need to create new columns containing i and some elements of W . To cover
as many elements of W at a time as possible, we examine the intersection
of W with each column. Since these intersections form sets of pairwise nsd
treatments, they are good candidates for new columns to be added together
with i. We repeatedly choose the largest of these intersections to create new
columns, until all elements in W are accounted for.
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Analysis. The runtime of the Clique-Growing heuristic is polynomial: With
a straight-forward implementation, it works in O(n5) steps for n treatments,
and with some modifications and a careful analysis, an upper bound of O(n3)
can be established for the algorithm including Sweeping (Gramm et al., 2006).
Sweeping is described in Section 2.6.

2.5 Search-Tree Algorithm

In this section, we review a further algorithm for CLD-C, which, like Clique-
Growing, is based on the equivalence between CLD-C and Clique Cover
(see Figure 2). This algorithm has an exponential runtime but, in contrast to
the previous two approaches, guarantees an optimal solution with respect to
CLD-C, that is, a letter display with a minimum number of columns. Here,
we give a brief overview on the algorithm which is, in terms of graph theory,
described in more detail by Gramm et al. (2006).

Algorithm. Search trees are a popular means of exactly solving hard prob-
lems. The basic method is to identify for a given instance a small set of simpli-
fied instances such that the given instance has a solution if at least one of the
simplified instances has one. The algorithm “branches” recursively into several
subcases, each subcase corresponding to a simplified instance, until a stopping
criterion is met. In this way, it finds a solution by an exhaustive search that
is realized as a recursive procedure. During branching, new opportunities for
data reduction can arise and, therefore, the search tree is interleaved with data
reduction.

Focusing on the objective of CLD-C, an important observation is that, with-
out loss of generality, we can assume that every column contains a maximally-

nsd subset of the treatments. Here, a set T ′ of treatments is called maximally-
nsd when all treatments in T ′ are pairwise nsd and no treatment from T can
be added to T ′ while maintaining this property. This observation can, on real
data sets, drastically decrease the number of choices we have, as columns only
need to be generated for maximally-nsd subsets of treatments.

We branch on maximally-nsd subsets of treatments. To this end, we choose
an uncovered pair of nsd treatments, enumerate all maximally-nsd subsets of
treatments containing this pair, and then branch according to the maximally-
nsd subset for which we add a column to the solution matrix. Details of the
algorithm, e.g., how to choose the treatment pair to branch on and how to enu-
merate maximally-nsd subsets of treatments containing the pair are explained
by Gramm et al. (2006).
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Table 1
Overview on the theoretical characteristics of the three algorithms solving Compact
Letter Display, with respect to their runtime and their guarantees of producing
a solution with a minimum number of columns or a minimum number of 1s.

Algorithm runtime optimality

no. of columns no. of 1s

Insert-Absorb exponential no no
Clique-Growing polynomial no no
Search-Tree exponential guaranteed no

As shown by Gramm et al. (2006), this algorithm is guaranteed to find a solu-
tion with a minimum number of columns. It is not obvious how a non-trivial
upper bound on the exponential runtime can be given. Note that Gramm et al.
(2006) additionally introduced four useful data reduction rules for CLD-C
which replace, in polynomial time, a given CLD-C instance by a simpler in-
stance such that a solution to the simplified instance is also a solution to the
original one. In this way these data reduction rules greatly reduce the search
tree size and enhance the performance of the algorithm.

2.6 Sweeping

We now describe the “Sweeping” method given by Piepho (2004) to reduce
the number of 1s in a given solution, the objective of CLD-Σ.

Algorithm. Given a letter display for H , the goal is now to minimize its
number of 1s while still retaining a correct letter display. We check for every
treatment i in a column C whether i can be omitted from C. We can omit i
if for all other treatments j in C there is another column containing both i
and j.

Notably, the order of processing the 1s can influence the resulting matrix.
Piepho (2004) does not give a strategy for processing the entries. A reasonable
strategy is to examine the entries in a random order, repeating several times,
and picking the best result.

A straightforward implementation of Sweeping requires O(n3) steps.
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2.7 Comparison of Methods

Ideally, a user interested in solving an optimization problem would like to
compute an optimal solution within a short runtime, say within a second. For
CLD-C we have a proof of its NP-hardness, i.e., a proof of its combinato-
rial difficulty. This means that it is very unlikely that one can achieve both
user goals at the same time, unless the instances to be solved are of small
size. Moreover, to complicate the situation, Compact Letter Display has
two optimization criteria, namely to minimize the number of columns in a
computed letter display, and to minimize the number of 1s.

In Table 1, we give an overview of the characteristics of the algorithms de-
rived from their theoretical analysis. Section 3.3 will discuss to what extent
the theoretical properties of the algorithms are confirmed by their empirical

evaluation.

Regarding the runtime, Table 1 shows that both the Insert-Absorb heuristic
and the Search-Tree algorithm have exponential runtime, which implies that
runtime may grow quickly with growing instance sizes and is likely to be-
come intolerably large even for instances of moderate size. In contrast, the
Clique-Growing algorithm has polynomial runtime, meaning that we have a
guarantee that the runtime grows only moderately with growing instance size,
also promising small runtimes for large instances.

Regarding the number of columns, only the Search-Tree algorithm gives a
guarantee that the number of columns in the produced letter display is as
small as possible. For the other two approaches, we cannot be sure whether
the produced letter display could not be replaced by one with fewer columns.
Note that for the user of letter displays it is highly desirable to have these as
compact as possible, so it is desirable to find solutions with a minimum number
of columns. Regarding the number of 1s, none of the three algorithms gives
a guarantee. In fact it is an open problem to find a competitive algorithm
computing a letter display with a minimum number of 1s. It is even open
whether it is possible to achieve both optimization goals at the same time,
i.e., minimizing the number of columns and the number of 1s simultaneously.

3 Experimental Evaluation

In this section, we report on the application of the three algorithms (all in-
cluding Sweeping) discussed in this paper. All algorithms were implemented
in the Objective Caml programming language (Leroy et al., 1996), which is
available for all major platforms. The source code is available from the au-
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Table 2
Comparison of the performance of the Search-Tree algorithm, the Clique-Growing
heuristic, and the Insert-Absorb heuristic on five datasets from real-world statistical
analyses. For each dataset and each heuristic we report the number of columns of
the computed letter display (cols), the number of 1s (1s), and the runtime in seconds
(time).

Insert-Absorb Clique-Growing Search-Tree

Dataset n |H| cols 1s time cols 1s time cols 1s time

Triticale 1 13 55 4 20 0.00 4 20 0.00 4 20 0.00
Triticale 2 17 86 5 32 0.00 5 33 0.00 5 32 0.00
Wheat 1 124 4847 56 986 1.93 50 711 0.20 49 663 4.00
Wheat 2 121 4706 50 902 1.66 48 605 0.17 48 656 3.69
Wheat 3 97 3559 39 691 1.03 32 484 0.15 31 487 2.08
Rapeseed 1 47 576 20 176 0.02 20 149 0.00 20 175 0.04
Rapeseed 2 57 1040 20 244 0.05 20 202 0.01 20 205 0.12
Rapeseed 3 64 1260 24 288 0.08 24 237 0.01 24 232 0.17
Rapeseed 4 62 1085 19 222 0.04 19 207 0.02 19 204 0.11
Rapeseed 5 64 1456 19 259 0.09 19 231 0.03 19 232 0.27
Rapeseed 6 70 1416 27 332 0.12 27 293 0.02 27 301 0.27
Rapeseed 7 74 1758 29 387 0.15 27 356 0.03 25 344 0.35
Rapeseed 8 59 1128 17 215 0.04 17 186 0.01 17 229 0.12
Rapeseed 9 76 1835 30 424 0.21 30 327 0.04 30 332 0.64

thors upon request. The testing machine is an AMD Athlon 64 3400+ with
2.4GHz, 512KB cache, and 1GB main memory, running under the Debian
GNU/Linux 3.1 operating system.

3.1 Real-World Data

In the following, we discuss results on three sets of data, each set containing
several examples. We use real-world data with many treatments. This requires
some justification. Letter displays are most frequently used and needed when
the number of treatments is smaller than 20. It should be emphasized, how-
ever, that multiple comparisons are used also when the number of treatments
is large. For example, plant breeders often perform such tests when there are
many genotypes (> 20), though they often only report a mean least signif-
icant difference (e.g. Miedaner et al., 2004) or the mean standard error of a
difference (Kempton and Fox, 1997). The reason for this is the lack of any
procedures to display the results of individual pairwise comparisons for large
unbalanced datasets. Thus, there is a need for informative displays of multiple
comparisons for a larger number of treatments. While letter displays might
not be appropriate in these cases, advanced visualization methods (for exam-
ple utilizing colors, additional visual elements, or software interactivity) would
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probably still require the structure discovered by our algorithms. This being
said, we would like to stress that our main reason for emphasizing examples
with many treatments is to put the different algorithms to the hardest possi-
ble test, as it turned out that differences between competing methods become
most prominent in this case. Moreover, we also want to have a sound empiri-
cal evaluation of to what extent the solution quality of the heuristic methods
(Insert-Absorb and Clique-Growing) typically deviates from the quality of the
exact Search-Tree algorithm. We measure the algorithm performance with re-
spect to three criteria: (1) the numbers of columns in the produced letter
displays, (2) the numbers of 1s, and (3) the runtime. The results are displayed
in Table 2.

Triticale yield trials. The first two examples refer to the comparison of
means in a mixed model analysis of series of yield trials with triticale in Ger-
many. Details of the data and the mixed model analysis for the first example
are described by Piepho (2000).

These examples are relatively small, containing 13 and 17 treatments. On
these data, the algorithms perform almost equally: their runtime is negligible
and the approaches produce letter displays with the same number of columns.
However, with respect to the numbers of 1s, the Clique-Growing heuristic is
outperformed by the other two approaches by one entry.

Winter wheat yield trials. These data are from a series of regional cultivar
trials with winter wheat in the federal state Mecklenburg–Western Pomerania
(Germany). Trials were performed at several locations between 1999 and 2004,
and they involved a total of 124 cultivars (treatments). The data were analyzed
according to a standard mixed linear model as described by Piepho and Michel
(2000). Multiple comparisons among all pairs of treatments were performed
using a t-test with degrees of freedom determined by the Kenward–Roger
method (Kenward and Roger, 1997). The locations fell into two ecologically
distinct subregions. The data in dataset “Wheat 1” were analyzed ignoring
the subdivision into subregions, datasets “Wheat 2” and “Wheat 3” contain
data separately for subregions.

These examples are considerably larger than the examples in the first set,
containing 97–124 treatments. Here, we can observe differences in the algo-
rithms’ performance: In all three examples, the Search-Tree algorithm pro-
duces letter displays with less columns than the two heuristics while requiring
the largest runtime. The Clique-Growing heuristic produces letter displays of
almost-optimal size. We observe large deviations in the number of 1s with the
Clique-Growing heuristic requiring the fewest 1s in two of three examples.
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Oilseed rape yield trials. The third set of examples concerns a series
of yield trials with oilseed rape conducted by the Bundessortenamt in Ger-
many from 1991 to 2000. The data fall into nine series of trials, each repli-
cated over three years at several locations. The design in each trial was a
randomized complete block design. The series had between 47 and 76 cul-
tivars, and it was highly unbalanced with respect to years, location, and
cultivars tested. We analyzed cultivar means per trial according to a three-
way linear model. The three main effects and the location-by-year interaction
were taken as fixed, while the remaining effects were considered as random.
The inverse of the squared standard error was used as a weight in order to
partition error from cultivar-by-location-by-year interaction. For more details
see Piepho and Möhring (2005).

These examples are of medium size, containing 47–76 treatments. The three
algorithms produce letter displays of the same size in all except one example in
which the Search-Tree algorithm outperforms the heuristics. The runtime of all
algorithms clearly remains below one second for all examples. With respect to
the number of 1s, the Search-Tree algorithm and the Clique-Growing heuristic
yield the best results, with the heuristic (slightly) outperforming the Search-
Tree algorithm in six out of nine examples.

3.2 Simulated Data

To get a broader view of the performance of the three algorithms, we generated
synthetic problem instances.

Model. We simulated significance tests for the pairwise comparison of means.
Our simulation procedure is such that the number of treatments (n) can be
chosen arbitrarily. Treatment means mi were generated from a normal dis-
tribution with mean φ and variance θ2. These were parameterized based on
an analysis of the oilseed rape data as φ = 42.6 and θ2 = 12.7. The variance-
covariance matrix Σ = {σii′} of simulated sample means was generated accord-
ing to Σ = D1/2RD1/2, where R is the correlation matrix and D is a diagonal
matrix containing the diagonal elements of Σ, i.e. the variances, and D1/2 is
the square root of D. Diagonal elements of D were generated from a gamma
distribution with shape parameter α = 4.12 and scale parameter β = 0.429, as
determined from the oilseed rape data. The off-diagonal elements rii′ (= ri′i)
of R were simulated as rii′ = (exp(2zii′) − 1)/(exp(2zii′) + 1) where zii′ are
i.i.d. normal deviates with mean λ = 0.00625 and variance η = 0.00182. In
order to make sure that R was positive definite, we used its spectral decom-
position R =

∑K
k=1

dkqkq
′
k, where dk are the eigenvalues of R and qk the corre-

sponding eigenvectors (Harville, 2000, p. 537). We then set any non-positive dk
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Fig. 3. Comparison of the output quality of the three algorithms. Averaged over 10
random instances.
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Fig. 4. Comparison of the runtime of the three algorithms. Averaged over 10 random
instances.

equal to the smallest positive eigenvalue and re-computed R from the spectral
decomposition. It should be mentioned that the resulting R may have diago-
nal elements < 1 such that it is not a true correlation matrix. The resulting
matrix Σ, however, will always have the properties of a variance-covariance
matrix and so will be valid for our purposes. The tests statistic for a pairwise
comparison among treatments i and i′ was tii′ = (mi−mi′)/

√
σii + σi′i′ − 2σii′ .

The difference of means for treatments i and i′ was declared significant at the
5% level when |tii′| > 1.96.

Results. Using the described model, we generated random instances of vary-
ing size. Randomized sweeping, repeated 10 times, was applied for each algo-
rithm. The results are shown in Figures 3 and 4.
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Table 3
Overview on the empirical analysis of the three algorithms solving Compact Let-
ter Display, with respect to their runtime and their performance in producing a
solution with a small number of columns or a small number of 1s. We indicate the
ranking (first, second, third) of the algorithms with respect to each criterion.

Rank Runtime No. of columns No. of 1s

1. Clique-Growing Search-Tree Clique-Growing
2. Insert-Absorb Clique-Growing Search-Tree
3. Search-Tree Insert-Absorb Insert-Absorb

3.3 Evaluations and Recommendations

In Table 3, we show the summarized ranking of the three algorithms with
respect to the three optimization criteria, namely runtime, number of columns,
and number of 1s. In the following, we summarize our insights from the results
on real-world (Section 3.1) and simulated (Section 3.2) data, and conclude with
recommendations.

With respect to runtime, our results for simulated data clearly show that
the Search-Tree algorithm requires the longest runtime and that the Clique-
Growing heuristic is fastest. However, results for real-world data show that
for these instances, it is still tolerable to run the Search-Tree algorithm.

With respect to the number of columns, our results for simulated data consis-
tently show that the Search-Tree algorithm yields the best results. However,
our results for real-world data reveal that for instances of small size the other
algorithms also yield optimal or near-optimal results in many (but not all)
cases.

With respect to the number of 1s, our results for simulated data consistently
show that overall the Clique-Growing approach yields the best results. Results
for real-world data confirm this in many cases, while in some cases the Search-
Tree algorithm is best.

For a concluding recommendation, note that the Insert-Absorb heuristic per-
forms poorest for both quality criteria; as, in addition, it has no guarantees for
its runtime, it seems always advisable to prefer one of the other two algorithms.
Between the Search-Tree algorithm and the Clique-Growing algorithm, the
choice depends on user priorities. The Search-Tree algorithm always produces
letter displays with a minimum number of columns; the Clique-Growing algo-
rithm typically produces letter displays with fewer 1s. However, in the range of
input sizes most commonly encountered in practice, neither difference is very
pronounced. The algorithms differ in the guarantees they offer: The Search-
Tree algorithm guarantees an optimal number of columns for the result, and
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the Clique-Growing algorithm guarantees a not exceedingly long runtime even
in extreme cases.

4 Conclusion

This is an interdisciplinary piece of work based on a fruitful interaction be-
tween applied statistics and theoretical computer science, contrasting a theo-
retical analysis of algorithmic approaches with their practical evaluation. Two
of these approaches, derived through the equivalence between the problems
Compact Letter Display from applied statistics and Clique Cover
from graph theory, are newly presented to a statistical audience. In partic-
ular, we shed new light on a previous heuristic for Compact Letter Dis-
play (Piepho, 2004) which is generally slower and less effective than the new
algorithms.

To compare the proposed algorithms, we focussed on examples with many
treatments, because differences among methods tend to be most pronounced
in these cases. Most applications we see in practice, however, involve only
a small number of treatments. When the number of treatments increases,
reading letter displays may become tedious. Also, with a large number of
treatments, selection of the best treatment is often the primary aim, while all
pairwise comparisons among treatments are of less importance. Thus, letter
displays are probably of most value when the number of treatments is not very
large. Reducing the number of symbols needed to the minimum enhances read-
ability of letter displays, and this paper has proposed and compared efficient
algorithms for this purpose.

One question left open in this work is to find an efficient algorithm that com-
putes letter displays with a minimum number of 1s. It is also a striking open
question whether there is always a letter display that minimizes both the
number of columns and the number of 1s at the same time.
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