Journal of Combinatorial Optimization manuscript No.
(will be inserted by the editor)

Separator-Based Data Reduction for Signed Graph
Balancing

Falk Huffner - Nadja Betzler - Rolf Niedermeier

the date of receipt and acceptance should be inserted later

Abstract Polynomial-time data reduction is a classical approactatd graph prob-
lems. Typically, particular small subgraphs are replacedrballer gadgets. We gen-
eralize this approach to handle any small subgraph that lsasatl separator con-
necting it to the rest of the graph. The problem we study idNRehard BALANCED
SUBGRAPH problem, which asks for a 2-coloring of a graph that minirsitres incon-
sistencies with given edge labels. It has applications @iesaetworks, systems biol-
ogy, and integrated circuit design. The data reductionreehgnifies and generalizes
a number of previously known data reductions, and can beeapid a large number
of graph problems where a coloring or a subset of the verticesught. To solve the
instances that remain after reduction, we use a fixed-pdesualgorithm based on it-
erative compression with a very effective heuristic sp@e@ur implementation can
solve biological real-world instances exactly for whicteyipusly only approxima-
tions were known. In addition, we present experimentallteor financial networks
and random networks.

Keywords Preprocessingexact algorithm Parameterized algorithmieglgorithm
engineering Gene-regulatory networkiFinancial network

1 Introduction

1.1 Data Reduction

Polynomial-time data reduction is a classical way of depliith hard problems: be-
fore starting the actual solving process, one tries to redlue size of the instance by

A preliminary shorter version of this paper appeared unlertitie “Optimal edge deletions for signed
graph balancing” in the Proceedings of the 6th Workshop opeEmental Algorithms (WEA 2007),
June 6-8, 2007, Rome, Italy, volume 4525 in Lecture Noteimguter Science, pages 297-310, Springer,
2007.

Institut fur Informatik, Friedrich-Schiller-Universit Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany.
E-mail: {hueffner,betzler,niederrh@minet.uni-jena.de.

removing or simplifying parts. More preciselydata reduction ruleeduces in poly-
nomial time an instance to a smaller instance, without dgstg the possibility of
finding an optimal solution. Data reduction has proven Usefia general technique
in coping with NP-hard problems (Guo and Niedermeier, 2007)

Many data reduction rules have been developed in a probpetific and ad-hoc
way based on small fixed-size substructures. A typical exaisphe following one
from|Wernicke|(2003) for ¥RTEX BIPARTIZATION, a problem closely related to our
main study problem BLANCED SUBGRAPH (see[Seci. 112). FRTEX BIPARTIZA-
TION asks to delete a minimum number of vertices from an undidagtaph to make
it bipartite, or equivalently, to destroy all cycles of o@agth.

Rule 1 Let G= (V,E) be aVERTEX BIPARTIZATION instance and let abcd be an
induced four-vertex cycle (Fin G, where the two nonadjacent vertices b and d have
degree2 in G. Then remove b.

This rule is correct because without loss of generality weenaeed to deletb,
since deleting or ¢ destroys at least as many odd-length cycles, and furthes the
an odd cycle containing iff there is an odd cycle containind. In a similar way,
considering structures of a few vertices, Wernicke (200&sented several more
data reduction rules. Another example is the “vertex fajtlirule, which gets rid
of degree-2 vertices in BRTEX COVER instances. (Chen etlal., 2001).

When looking at the correctness proofs of these reductil@s rone notices that
they are often, implicitly or explicitly, based on a separdthat is, a set of vertices
whose deletion separates the graph into at least two cathecimponents): we have
a small number of vertices (e.g.andd in [Rule~1) that are separated by a small
separator (e. ca andc in[Rulel) from the rest of the graph. Similarly, in the case of
VERTEX COVER a degree-2 vertex forms a component of size 1 that is dividwed f
the rest of the graph by a separator of size 2. Our aim is torgérethis kind of data
reduction rule.

In[Seci?, we present a scheme that can provide a data reddictisuch struc-
tures in BALANCED SUBGRAPH instances in general, without the need to manually
derive and prove rules for each fixed structure 4s1n Rule &.idéa is to find a small
separatofS that cuts off a small compone@tfrom the rest of the graph. Then, we
replaceS andC by a smaller gadget that exhibits the same behavior withexdp
the underlying graph problem.

A similar method has been suggested_by Polzin and Vahdaggranand (2006)
for the STEINER TREE problem. However, they do not employ gadgets and have
no formal characterization of reducible cases. Anotheilairmethod arecrown re-
ductionrules [Abu-Khzam et all, 2007). Crown reductions also woykKibding a
separatothat cuts off a componef, and impose additional demands $andC
(for instance for \ERTEX COVER, C must be an independent set and there must be a
matching betweef andC that matches all vertices & (Abu-Khzam et al.. 2004)).
The main difference to our approach is that we do not assumeatticular proper-
ties of SandC, except that they are small.

Another related technique are tree decompositions (Hickds, 2005; Bodlaender
and Koster| 2008). Here, the major difference is that thepire the graph to be
“covered” with small separators; for example, a large dighwarts the approach.

In contrast, our approach can be applied profitably even vdmiy some parts of
the graph have small separators, which commonly occursradthworld inputs like
those examined i .Secl. 4.

1.2 Balanced Subgraph

The NP-hard BLANCED SUBGRAPH problem is defined osigned graphswhich
are undirected graphs where each edge is annotated witbrae® of the sign group
(that is, the unique two-element group, which can for exanbel denoted by the two
elements 0 and 1 and the binary operatorb := (a+b) mod 2). The concept of
signed graphs has been introduced firsi_by Harary (1953)drctimtext of social
networks, and has been rediscovered frequently since,iasainatural model for
many applications; see Zaslavisky (1998) for a bibliographgigned graphs. The
central concept is that of Balancedsigned graph: A signed gragh= (V,E) with
edges labeled bly: E — {0, 1} is balanced if there is a vertex colorifigV — {0, 1}
such that

V{u,v} € E:h({u,v}) = (f(u)+ f(v)) (mod 2. 1)

Put another way, a 0-edge demands that its endpoints hagarte color, and a
1-edge demands that they have different colors. Thereifotae following we use
the notations £-edge” and %-edge” instead. Let furtheE_ be the set of=-edges
andE.. the set of~-edges.

Balanced graphs generalize bipartite graphs, since biggraphs are balanced
graphs that contain only-edgesl_K&nigl(1936) proved the following characteriza-

tion of balanced graphs. For a gra@h= (V, E), the following are equivalent:

1. V can be partitioned into two set§ andV;, called sidessuch that there is no
#-edge{v,w} € E with bothv,w € V; or bothv,w € V, and no=-edge{v,w}
with ve Vy andw € V,.

2. V can be colored with two colors such that for allw} € E. the verticess andw
have different colors, and for afv,w} € E_ the verticess andw have the same
color. The color classes correspond to the sides.

3. G does not contain cycles with an odd numbegeédges.

Using the characterization by a coloring, it is easy to saelialance of a signed
graph can be checked in linear time by depth-first search. BAleANCED SuB-
GRAPH problem is now defined as follows:

BALANCED SUBGRAPH

Instance: A signed graptG = (V,E) and an integek > 0.

Question: CanG be transformed by up tk edge deletions into a balanced
graph?

EDGE BIPARTIZATION is the edge-deletion version oBRTEX BIPARTIZATION.
Since EDGE BIPARTIZATION is the special case of RANCED SUBGRAPH where
there are only£-edges, NP-hardness and approximation hardness resuls &e
BIPARTIZATION carry over to BLANCED SUBGRAPH. In particular, BALANCED
SUBGRAPH remains NP-hard even in triangle-free graphs with maximwgree

@ (b)

Fig. 1: Example for a yes-instance oABANCED SUBGRAPH and an equivalent
yes-instance of BGE BIPARTIZATION. Colors serve to indicate that the graph is
balanced (a) resp. bipartite (b).

three ((Yannakakis. 1981). The problem is MaxSNP-hard (#agp&iou and Yan-
nakakis| 1991), and assuming Khot's Unigue Games Congdituis even NP-hard
to approximate within any constant factor (Khot, 2002).

There is a simple reduction fromaABANCED SUBGRAPH t0 EDGE BIPARTIZA-
TION, which allows to transfer some tractability results fromdE BIPARTIZATION.
For this, we subdivide eack-edge by one vertex (s¢€ Figure 1). After this, it is
easy to show that a/8 ANCED SUBGRAPH instance can be solved wikhedge dele-
tions iff the transformed BGE BIPARTIZATION instance can be solved withedge
deletions. In particular, the above reduction implies Bt ANCED SUBGRAPH can
be solved in polynomial time oweakly bipartitegraphs, which comprise bipartite
graphs and planar graphs (Grotschel and Pulleyblank)1 $8tther, BALANCED
SUBGRAPH can be approximated to a factor©f./logn) in polynomial time (Agar-
wal et al.; 2005), whera is the number of vertices in the input. Another approxima-
tion algorithm finds in polynomial time a solution of siZ¥klogk), wherek is the
size of an optimal solution (Avidor and Langhelrg, 2007).

MAXCuUT is EDGE BIPARTIZATION with the dual optimization objective of max-
imizing the number of undeleted edges. If we consider thjsaiive for BALANCED
SUBGRAPH, we cannot directly obtain the same approximation factod.8%8 as
for MAXCUT (Goemans and Williamsbh, 1995), since the number of edgghtmi
double in the reduction. However, it was shownlby Thagard \ertheurgt i(1998)
and independently by DasGupta et al. (2007) that the semitéefirogramming of
Goemans and Williamsbh (1995) can be adaptedapMBICED SUBGRAPH without
impairing the approximation factor. While these are mucbrgier guarantees than
for the minimization variant, minimizing the number of diele edges is in many set-
tings the more natural model; for example, in the biologietivorks considered by
DasGupta et all (2007), only few edges need to be deleted ke them balanced
(sedTablell iSect 4).

Similar to EDGE BIPARTIZATION, polyhedral approaches have been used for
BALANCED SUBGRAPH (Barahona and Ridha Mahjcub, 1939; Boros and Hammer,
1991), which also cover the weighted case. Coleman et dd&xxamine the practi-
cal performance of several approximation algorithms fat BNCED SUBGRAPH.

A different approach to BLANCED SUBGRAPH is parameterized algorithmics
(Downey and Fellows, 1999; Flum and Grohe, 2006; Niedenm2®06). The idea
is to confine the combinatorial explosion to a paramktéy problem is calledixed-

parameter tractablevith respect to a parametérif an instance of sizen can be
solved in f (k) - n°Y time, wheref is an arbitrary computable function depending
only onk. EDGE BIPARTIZATION can be solved i©(2“m?) time (Guo et al., 2006),
wheremis the number of edges in the input, and thus by the transfiiwmdescribed
above B\LANCED SUBGRAPH can be solved in the same time bound, showing the
fixed-parameter tractability of 8 ANCED SUBGRAPH. Since in many applications
kis much smaller tham, this is a promising approach.

Applications. BALANCED SUBGRAPH has a large number of applications. One of
the oldest is in modeling social networks (Harary, 1959)e;lan=-edge models a
positive or friendly connection, #-edge models a negative or unfriendly connection,
and a non-edge a neutral connection or lack of contact. Thiectre is that changes
in social networks can be explained by a striving towardare in this signed graph.
The number of edge deletions required to obtain a balan@gahds then a measure
of the distance from stability. An example was given_ by Amahbl. [2006) for the
relations between nations prior to World War 1.

The following application for gene regulatory networksvaié central to some
of our experiments iCSeci] 4. DasGupta etlal. (2007) usexhbalin signed graphs
to model the concept of “monotone subsystems” under the rdirfsggn-consistent
graphs”. They examined dynamical systems, where a gene delet as a vertex
and an activating connection is modeled as=ardge and an inhibiting connection
is modeled as &-edge. The claim is that biological dynamical systems aseecto
being balanced, and that finding a minimum set of edges tdel&lenake the graph
balanced can be used to decompose the graph into “monotbsgstems”, which
exhibit stable behavior and thus allow a better understendf the dynamics of a
system.

Further applications of BLANCED SUBGRAPHappear in statistical physics (Bara-
hona/ 1982), portfolio risk analysis (Hararv et al.. 20@2d VLSI design (Chiang
et al.,[2007).

1.3 Contributions

We show a general scheme for data reduction faL NCED SUBGRAPH by re-
placing small componen(that can be cut off by a small separa®with gadgets
Eect21). In particular, all separators wji = 2 and|C| > 1 and all separators
with |S| = 3 and|C| > 2 allow to simplify the instancg (Corollary 1). To solve the
instances that remain after data reduction, we adapt a fireaimeter algorithm for
EDGE BIPARTIZATION yielding anO(2X- n?) running time withm denoting the num-
ber of edges. Further, we present a speed-up trick that ofthrces the running time
of this algorithm in our experiments from days to few secof8Eci_#). We experi-
mented with the real-world biological instances providgddasGupta et all (2007).
Our program needs similar amounts of time (up to about 1 h)cho solve them
optimally. Moreover, we experimented with synthetic datd &urther real-world in-
stances (such as financial networks) to chart the bordenseitfdity of our algorithm.

Fig. 2: Example folReduciion Schemsd 1

2 Data Reduction

In this section, we present polynomial-time executabl@ datluction rules for the
BALANCED SUBGRAPH problem. We assume th@tis amultigraph which can have
multiple labeled edges between two vertices. This is udefuseveral applications
and actually makes the data reductions easier to formulate.

The data reduction scheme is based on finding small sepaeatda novel gadget
construction scheme. It unifies and generalizes a numbereofqusly known data
reductions/(Wernicke, 2003) and seems applicable to a wédeye of graph problems
where a coloring or a subset of the vertices is sought.

2.1 Data reduction scheme

In this section, we describe how to obtain data reductioBfrANCED SUBGRAPH
from a small separat@that cuts off a small compone@tfrom the rest of the graph.
For this, we examine the effect &andC on optimal solutions and replace them
with an equivalent smaller gadget. As is standard with sgpaibased methods, the
behavior of an(S,C)-pair is examined by exhaustively enumerating possiblesiaf
the separator and finding exact solutions to the small coep@ For BALANCED
SUBGRAPH, the states are possible colorings of the vertices in tharagqr in an
optimal solution. We now present the scheme more formally.

Reduction Scheme 1Let S be a separator and let C be a small component obtained
by deleting S from the given graph G. Then, determine for efitte (up to symmetry)
21S—1 colorings of S the size of an optimal solution for the indusigllgraph GSUC]

and replace in G the subgraph[8JC] by a gadget that contains the vertices of S
and possibly some new vertices.

The above scheme leaves open some details. Before fillimg ithdet us show a
simple example.

Example 1In[Figure 2, the separat&cuts off the vertices i€ from the rest of the
graph. Up to symmetry, there are only two possibilities hbe vertices inS can
be colored: equal or unequal. If they are colored equal li@)stibgrapl&[SUC] is
balanced without edge deletions. Otherwise (b), one edgéateis required (dashed

line). We can simulate this behavior with a singieedge between the two vertices
in S: it also incurs a cost of 0 when the two verticesSare colored equal, and a cost
of 1 otherwise. Therefore, we can replace the subg@&ShC] by the gadget shown
on the right.

To fully describe the reduction scheme, four questions labe answered:

(a) The instance&[SUC] have some vertices (those of the separator) pre-colored.
How to solve these already partly colored instances?

(b) There is a combinatorial explosion with the sizeSahdC affecting the running
time. Therefore, how do we restrict the choiceSahndC?

(c) How can we efficiently find usefyl,C)-combinations?

(d) If existing, how can we construct a gadget that is sm#élflenG[SUC] and cor-
rectly “simulates"G[SUC]?

Regarding (a), we reduce the instance to an instance wiiteutolored vertices,
and then solve the instance recursively. For this, we meigesdices pre-colored
black into a single uncolored vertex and all vertices priseal white into a single
uncolored vertex. Here, tmergetwo verticesv andw means to delete andw and
all incident edges, and add a new ventexith edges fronx to each vertex that was
connected tor or w. We then add a sufficient number (e|B]) of edges labelegt
between the two new vertices, to ensure that no solutiorrsdhem equally. Any
solution for this instance will then color the two verticefetently, and we can
(possibly by flipping all colors) reconstruct a solution fbe pre-colored instance.

Regarding (b), this can be simply done by imposing a fixedlimithe implemen-
tation used in our experiments, we restrict the siz& tf at most 4, mainly because
of difficulties with the gadget construction. The size®fs (somewhat arbitrarily)
restricted by 32; however, due to the structure of our irtanthis limit did not play
arole, because all components found were much smaller.

As to (c) and (d), we will answer these questions in the neatdubsections. Fi-
nally, note that our approach obviously is only promisingase of graphs possessing
small separators. Clearly, this excludes “highly” coneddraphs. Fortunately, many
real-word networks contain “enough” small separators.

2.2 Efficiently finding separators

To improve running time, we special-case the search forragpa of size 0 (that

is, the graph consists of more than one connected compoardtseparators of
size 1 (that is, articulation points). They can be foundmedr time using depth-first
searchl(Gabaw, 2000). For these cases, the gadget coitstroah be omitted: the
2-connected componeﬂl&m be treated independently, and optimal colorings of two
components can always be merged (possibly by flipping adirséh one component),
since they overlap only in one vertex. Note that this phaggaiticular removes all
degree-1 vertices.

1 Agraph is 2-connected if there are at least two vertex-iisjpaths between any pair of vertices from
this graph.

Separators of size 2 can also be found in linear time (Hoparaf Tarjan, 1973).
However, we did not implement this algorithm, since it istquiomplicated and error-
prone to implement (several errors in the original pubiaahave been pointed out
(Gutwenger and Mutzel, 2000)).

Separators of sizkefor smallk can be found efficiently by flow techniques (Hen-
zinger et al.L_2000). However, after some experiments vikeddor the subsequently
described heuristic instead, which is faster and producewarse results in our
tests. For a vertex se, let N(X) := {u| {u,v} € EAv e X} \ X. For each ver-
texv, setC := {v} and iteratively enlarg€ by a vertex/ that minimizes the size of
S:=N(CuU{V'}) until |C| exceeds the size limit. The size 8tan grow and shrink
during this process; we record all combinationSa@ihndC with S< 4.

To get a heuristic speedup, it is useful to first treat sepesahat are easy to
deal with, but promise large reductions. Therefore, we tm{S,C)-combinations
primarily by increasing size 06 and secondarily by decreasing size@fIn our
experiments, the finding of separators in the above way etlbay never took more
than few seconds for graphs with up to about 1000 vertices.

2.3 Gadget construction

The goal is to show how the subgrafiSUC]| induced by the separat&and the
small component can be replaced by a smaller, “equivalent” subgraph (gadget
simple case has already been describgd In Exanjple 1. Nowgs@ide a general
methodology, leading also to theoretically interestinglgpems that deserve further
investigation.

Let us call a separator of siksimplyi-cut. As mentioned before, itis easy to deal
with 0- and 1-cuts. Hence, we focus on larger separatongligelescribing construc-
tions delivering optimal gadgets in case of 2- and 3-cutsaaheuristic approach for
4-cuts. We also briefly discuss the mathematical and alguiit challenges behind
constructing gadgets farcuts for generall.

By an optimal gadget we refer to one with a minimum number of vertices (the
alternative setting of minimizing the number of edges migghvorth consideration as
well). When speaking of aaquivalenigadget which replaces the subgra@isuC],
we refer to a subgrapH with the following properties:

1. GadgeH contains all vertices frons and possibly more; in particulagforms
the “interface” wheréd is plugged in instead d&[SUC].

2. The original graplit has a solution for BLANCED SUBGRAPH of sizek iff the
modified graph wherkl replaces3[SUC]| has a solution of sizE <k, where the
difference betweeR’ andk is determined by the gadget. Moreover, an optimal
solution for G can be reconstructed from an optimal solution for the madlifie
graph.

2.3.1 Gadget construction for 2-cuts

shows a special case of 2-cuts. Up to symmetryg #rer only two col-
orings of the two separator verticasndv. In each of these two cases, we compute

recursively an optimal solution fa8[SUC], which can be done quickly, since only
smallSandC are considered.

Let ne be the size of an optimal solution f@{SUC] whereu andv have equal
colors, and lety be the size of an optimal solution where they have distintdreo
We perform the following gadget construction, where theggadonsists solely of
vertices fromS. If ne > ng, then removeC and all edges withirs and addne — ng
edges labeledt betweenu andv. Otherwise, remov€ and all edges withirs and
addng — ne edges labelee: betweeru andv. Note that reducing 2-cuts in particular
gets rid of all vertices of degree 2.

Lemma 1 Let G be the original graph and let’®e the graph obtained from G by
performing the described gadget replacement. Then G hatutieoof size k iff G
has a solution of sizek min{ne,ng}.

Proof Consider first the casa > nq. From a solution of siz& for G, we can con-
struct a solution of sizé& — ng for G’ by using the same coloring restricted to the
remaining vertices and deleting all inconsistent edgethidfsolution colorsi andv
differently, we saveny edges withinG[SU C]; the #-edges do not incur any addi-
tional cost. If this solution colors andv equally, we save. edges withinG[SUC],
but need to delete afl. — ny #-edges betweemandy, also resulting in a solution of
sizek— ng. In the same way, we can construct from a solution of kizeny for G’ a
solution of sizek for G. The case < ng works in complete analogy. O

2.3.2 Gadget construction for 3-cuts

The basic approach is the same as for 2-cuts. The gadgetwctitst, however, be-
comes more intricate. The idea is to construct the final gafige atomic gadgets
which can be added independently until in total they haveltsired effect. To char-
acterize the effect of an atomic gadget, we introduce theeoinof acost vectorin
the case of 3-cuts, up to symmetry, we have four possilslitiecolor the vertices
from the separato®. For each case, we compute the cost of an optimalsBICED
SuBGRAPH solution of G[SUC]. For a fixed order of the colorings, these values build
the cost vector of the fornfcy,cy,c3,¢4). The goal is then to find atomic gadgets
such that their corresponding atomic cost vectors add upetodst vector associated
with G[SUC].

We show that it is sufficient to consider atomic gadgets thesjdesS, have at
most one additional vertex. The first type of atomic gadgetggadgets exclusively
made of vertices frons. More specifically, there are six possibilities to put ekact
one edge, either labeledor #, between the three possible vertex pairingS.ikach
of these possibilities yields an atomic gadget. Moreowarhef these atomic gadgets
naturally one-to-one corresponds to a cost vector withedities. For instance, let
{u,v,w} form the separator. Then, the atomic gadget with-ae@dge between andv
corresponds to the cost vectd, 1,1,0) (seegFigure Ja): It andv have the same
color (once white, once black), then the insertion of thedge does not cause an
inconsistency. Thus, we have an additional solution co8t pfstifying the two zero-
entries in the cost vector. ifandv have different colors, then the insertion of the
edge causes an inconsistency, generating an additionaicsotost of 1, justifying

10

|0110|

(a) no extra vertex (b) one extra vertex

Fig. 3: Examples for atomic gadgets for a size-3 sepafator w}

the two one-entries in the cost vector. Generalizing thitéofive other possibilities
of putting exactly one labeled edge, we arrive at the follayvi

Lemma 2 By inserting exactly one edge labeletr # between the vertices from S,
we obtain the six atomic cost vecto(®,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1),
(1,0,1,0), and(1,1,0,0).

All cost vectors ifLemmal2 have even parity. Hence, we neeecarsl type
of gadgets to be able to construct cost vectors with oddypaytdgets that contain
all vertices fromS plus a new vertex connected to all vertices fr@m\e derive
four atomic gadgets of this kind with different cost vectaramely the cases that the
edges connectingto the new vertex are labelée, #, #), (=,=,#), (#,=,#), or
(=,#,7#) (an example is shown [0 Figure]3b).

Lemma 3 By inserting one new vertex and connecting it to all vertitesn S and
assigning various edge labels, we obtain four atomic gagigetresponding to the
atomic cost vector0, 1,1,1), (1,0,1,1), (1,1,0,1), and(1,1,1,0).

The four atomic cost vectors frdl Lemma 3 all have odd padiritthis sense, we
now may speak oévenor odd cost vectors.

Now, we can describe the general gadget construction. T@dfirst note that
vectors where all entries have the same valaee easy because this means that the
solution forG[SUC] is independent of the coloring &and hence one can simply
removeC and all edges between vertices ®and decrease the paramekeby x.
This means that if we are given a cost vector, cy,C3,C4), then without loss of
generality we camormalizeit by simply subtracting or adding the vectdr, 1,1,1),
each time decreasing or increasing the parameter by one, ¢legn a cost vec-
tor (c1,C,C3,Ca), the gadget construction task one-to-one correspondsdmngra
way to subtract atomic cost vectors frofmy, Cz,C3,¢4) such that one receives the
vector(0,0,0,0). If we arrive at a cost vector with at least two 0-entries ttainot
be transformed intg0, 0,0, 0), then due to the above reasoning we may also add the
vector(1,1,1,1). Altogether, this results in the following algorithm:

1. Compute the cost vector for giv&andC.
2. Normalize the cost vector by subtracting the ve¢fiod, 1,1) until at least one
entry becomes 0.

11

Fig. 4: Example for the construction of a gadget wih= 3

3. Ifthe cost vector has odd parity and has more than oner§; émtn add1,1,1,1).
4. If the cost vector has odd parity, then subtract a suitabtbatomic cost vector
(that is, one that does not produce negative entries).
5. While the vector is naf0,0,0,0), repeat:
(a) If the cost vector has three 0-entries, then @dd, 1,1).
(b) Subtract a suitable even atomic cost vector that deesghs maximum entry.

Example 2In [Figure 4, we start with the induced subgra@fSuUC|, whereS =
{u,v,w} is the separator. In the middle we show optimal solutionstler (up to
symmetry) four possible colorings & and mark by a dashed line the edges that
have to be deleted. The number of edge deletions are disptmiew these figures,
forming the cost vectof4, 3,3, 3). Normalization yields the vectdd,0,0,0). Since
this is an odd vector with more than one zero, it gets paddég i91,1). This is an
odd vector, so we need a gadget using an extra vertex andetges[[Lemmal3).
From the three vectors whose subtraction decreases thermaxelement 2, we
arbitrarily choose1,1,1,0), corresponding to adding from a new vertexsedge
to u, a #-edge tov, and an=-edge tow. The remaining cost vectdd,0,0,1) can
be covered by adding #-edge between andv, leaving the all-zero vector. The
resulting gadget is shown on the righfof Figufe 4. We havéraoted the all-1 vector
twice and added it once, and therefore the parameter desrbgone.

Theorem 1 The above algorithm produces a gadget with the minimum nuwibe
vertices for every paifS,C) where S is a 3-cut.

Proof First of all, it is clear from the one-to-one correspondeheaveen atomic
gadgets and atomic cost vectors that by “superimposing’atbenic gadgets cor-
responding to each (possibly multiple times) subtractedhat cost vector, one di-
rectly arrives at an overall gadget (with possibly multipldges). Concerning the
usage of the normalization vect(, 1,1,1), we have already argued before that this
does not affect the correctness of the gadget construdtience, in the remainder
we focus on showing that the algorithm always terminate$ Waving generated
the vector(0,0,0,0) by subtracting atomic cost vectors and possibly subtrgain
adding(1,1,1,1).

Once subtracting a suitable odd atomic vector, we arriveeastvector with even
parity (Steps 1-4). In the further process (Step 5), we Wwilbgis have an even parity

12

and it suffices to concentrate on the termination of the wloitgy of the algorithm.
Since the six atomic cost vectors represent all possibleovewvith exactly two 1-
entries, as long as we have at least two nonzero-entrieg iod$t vector, there is at
least one even atomic cost vector that we can subtract. Nssunge that we have
a cost vector with three zero-entries and one nonzero-erftsy an evenre (this is
the only remaining possibility besides having the all naozentry). Then, the algo-
rithm adds(1,1,1,1). Now, after this addition we can three times subtract an &tom
vector, decreasing the enteyby two before again all originally zero-entries become
zero again. Repeatedly proceeding this way, we thus alwaysaaive at the vec-
tor (0,0,0,0) in a finite number of steps. The construction is optimal beeahe
gadget has at most one additional vertex (bes&eand this happens only for odd
cost vectors, where it is unavoidable. O

Note that the construction is not necessarily optimal wéspect to the number of
edges introduced, nor with respect to the decreakehtowever, in our experiments
these objectives rarely had different optimal solutions.

As a consequence of the considerations so far, we obtainotlving result,
illustrating the power of our approach.

Corollary 1 With the described data reduction scheme, all separatotis \8| = 2
and|C| > 1 and all separators withS| = 3 and|C| > 2 are subject to data reduction.

2.3.3 Gadget construction for larger cuts

The gadget construction for 3-cuts already has requireig goime machinery. The
case of 4-cuts becomes still much more involved due to three@&sed combinatorial
complexity. A provably optimal gadget construction as feruds currently does not
seem practically feasible. Thus, we have chosen a heuajsticoach for finding and
constructing gadgets for 4-cuts.

We conjecture that atomic gadgets with at most two verticesldition to the four
separator vertices suffice. Thus, we generafeat@mic gadgets with no extra vertex
(corresponding to the choices of labels for the 6 edges mwidh-vertex separator),
2* atomic gadgets with one extra vertex (4 edges connectingexva the separator
to the new vertex), and®2tomic gadgets with two extra vertices (8 edges to the new
vertices, and one edge connecting the two new vertices) héfe filtered out those
that can be obtained by combining cheaper ones, and arritexchaout five minutes
of computation time on a standard PC at a set of 2948 atomipegadl hey are stored
in a fixed lookup table.

Once given this toolbox of atomic gadgets, we again try tavdethe all-zero
vector in a way analogous to the case of 3-cuts. This proeddumow realized by an
exhaustive branch & bound algorithm. We start with the ndized vector. Should
this fail, the vector(1,1,1,1) is added once and the procedure is repeated. Each gad-
get vector is associated with a cost corresponding to itdyenmf extra vertices; this
number is minimized. In fact, it is not too hard to see that #igorithm produces for
3-cuts, when given the 10 atomic cost vectors, the samet gesthe algorithm given
for 3-cuts.

13

The branch & bound algorithm works quite well for cost vestaith small en-
tries, but can become a bottleneck for vectors with highesntiVe examine a simple
heuristic to mitigate this il-Sect]l 4. We close with a degwipof challenges for
further research that arise in our work with cost vectors. ths, we describe the
scenario in a more abstract way.

Given a seSof n vectors of length with nonnegative integer components, let a
linear combinatiorbe a sum of some vectors 8fwhere vectors can occur multiple
times (equivalently, have a positive integer scalar fgctoet a basisbe a set that
allows to obtain any vector of lengthwith nonnegative integer components as a
linear combination. (The terms are chosen in analogy toovesgtaces, but because
of the nonnegative integer restriction, we do not have aoresgace here.) We face
the following problems:

— How to recognize whether a vector set is a basis?

— Given a basis and a target vectohow to find a linear combination that pro-
duceg?

— Given a large set of vectors, how can we find a smallest or nahrasis?

In our work, we actually have a small modification of this gesh because as
single vector with negative components also the vegtdr,—1,...,—1) is allowed.
Also, the vectors come at different costs (hnumber of newices}, and we would like
to find linear combinations of minimum cost.

This touches a deep and old subject in mathematics (see @xgnBk and Woods
(2003);LSturmfels| (1996)). Seemingly, our questions seetmet more special than
what is generally studied there, but this clearly deservagé theoretical studies.

3 Fixed-Parameter Tractability

While the data reduction rules presentellin Séct. 2 can ofterh reduce the instance
size, there will typically remain a “core” that cannot bethar reduced. To solve the
remaining instances exactly while getting a useful woestectime bound, we use a
fixed-parameter algorithm.

As mentioned in the introductory sectionp&E BIPARTIZATION on anm-edge
graph can be solved iB(2Xm?) time (Guo et al., 2006), which together with the re-
duction from BALANCED SUBGRAPHt0 EDGE BIPARTIZATION shown there demon-
strates the fixed-parameter tractability of{IBANCED SUBGRAPH.

Theorem 2 Given an m-edge graph with at most k edge deletions alloBed -
ANCED SUBGRAPH can be solved in @ n?) time.

[Theorem P improves a@®(n?- - (nm)®) time exact algorithm by DasGupta ef al.
(2007, Remark 1), whetleis the number of£-edges (since clearly<L).

In our implementation, we do not use the reduction fronGE BIPARTIZATION,
but directly modify the IBGE BIPARTIZATION algorithm to work for BALANCED
SUBGRAPH. Further, we employ a heuristic speedup trick similar to ahe used
for an iterative compression algorithm foeE¥TEX BIPARTIZATION (Hilffnel,12005).
We inferred speedups with this trick up to a factor of abodf£10

14

To give the basic idea of the algorithm and to be able to desthie speedup, we
briefly sketch how the iterative compression algorithm farGE BIPARTIZATION
works; we refer to the original work (Guo etldl., 2006) foralkst and correctness
proofs. A presentation of both results can also be foundarfitst author’s doctoral
thesisl(Huffner, 2007), and a general survey on the iteratbmpression technique is
given by (Guo et &ll, 2008). The key idea is to usmapression routinéhat, given
a size{k+ 1) solution, either computes a sikesolution or proves that there is no
smaller solution. We then build up a solution for a gr&ph: (V, E) inductively: start
with E’ = 0 andX = 0; clearly,X is an optimal solution fo6G[E’] (the graph induced
by E’). Now add one edg€ ¢ E’ from E to bothE’ andX. ThenX is still a solution
for G[E’], although possibly not a minimum one. We can, however, olatatinimum
one by applying our compression routine. This process isatgul untie’ = E.

The tricky part is to come up with a compression routine. ki, two additional
properties are imposed: the given solution is inclusioniméh, and the smaller so-
lution that is sought for is disjoint from the given one. Thestfiproperty is easy to
ensure. The second property can be assumed without lossiefaiigy by applying
a simple input transformation: we subdivide each edge tlaat part of the edge bi-
partization set by two vertices, and add the middle segmiezaich subdivided edge
into the new edge bipartization set. This ensures that ne efithe original solution
needs to be reused in a smaller solution, since one of the @éighoring edges is
always suitable as replacement.

After these prerequisites, one can show that all that thepeession routine has
to do in order to compress a solutighof sizek+ 1 to a solution of sizé is to find
an edge cut of sizk between the two halves ofvalid partition (Guo et al.| 2006).
Here, a valid partition is a partition of the endpoints of duges inX into two halves
where each of the two endpoints of one edge is in a differeifit Al O(2¥) valid
partitions are then simply tried by brute force.

Itis easy to verify that a small tweak to the algorithm suffibt make it work for
BALANCED SUBGRAPH (Huffner,12007). The only required change is in the induc-
tive main loop: when adding an edge and ensuring the miniynaflthe new solution,
one has to take the edge labels into account.

Heuristic speedupln our experiments, the plain iterative compression atbaori
turned out to be too slow in many cases. Hence, we developathaitjue for speed-
ing up the algorithm. Although heuristic in nature (thatvsthout provable worst-
case running time improvement), this approach turned obetwery effective and
it was decisive in order to optimally solve hard problemamstes quickly. A similar
speed-up trick has been used (Huffier, 2005) for an iteratbmpression algorithm
for the VERTEX BIPARTIZATION problem.

The idea is, in the transformation that ensures disjoistioés smaller solution,
to choose one of the two end edges into the solution instetiteahiddle edge. The
correctness arguments are still valid with this change. él@x it can happen then
that two edges in the solution share an endpoint. This carfieited: the number of
valid partitions halves, since it is no longer possible tacplthe coinciding endpoints
into different halves. To obtain the maximum gain from thig, have to choose the
side where we take the solution edge such that the numbecidgint solution edges

15

is maximized. In other words, for the graph induced@yve need to find a minimum
set of vertices such that each edge contains at least onesd thertices. This is
the well-known \ERTEX COVER problem. While \ERTEX COVER is NP-hard, the
resulting instances are small and sparse (e. g., 80 vedim80 edges), and can be
easily solved by a simple branching strategy.

Clearly, the above approach does not give any worst-caseirements, since
it is easy to construct examples where the solutionXséis no incident edges at
all. In our experiments, however, we experienced signifisaped-ups. For instance,
whereas without the above trick the iterative compressigardhm took days for
a yeast graph instance, with the heuristic it could be solweskconds. In an in-
stance where without the heuristic one would have checkédaid partitions of
the endpoints of the edges ¥y due to the trick only ? valid partitions had to be
considered. Thus, only due to the trick iterative compmsbiecame feasible, saving
a factor of 20~ 102 in the running time.

4 Implementation and experiments

We applied our data reduction foraBANCED SUBGRAPH (Sect?) combined with
the improved iterative compression routifie {Sett. 3) toegagulatory networks,
randomly generated graphs, and financial networks. Ourdmehtation consists of
about 1600 lines of Objective Caml_(Leroy et al., 1996) codé about 300 lines
of C code that implements the time-critical compressioninguof the iterative com-
pression method. All experiments were run on an AMD Athlon3@90+ machine
with 2.4 GHz, 512KB cache, and 1 GB main memory running unterDebian
GNU/Linux 3.1 operating system. The program was compiletth Wibjective Caml
3.08.3 and the GNU gcc 3.3.5 compiler using the options “-@&reh=athlon”. For
the approximation algorithm by DasGupta et al. (2007), wedUdATLAB version
7.0.1.24704 (R14). Our source code is available as freevaodtunder the GNU Gen-
eral Public License frorhttp://theinfl.informatik.uni-jena.de/bsg/.

Besides the data reduction rules describddin Sect. 2, wisaudly delete self
loops and pairs of edges sharing the same end vertices ifddpesehave different
signs. These reductions can be seen as special cases oftauedaction scheme
from[Seci P withlC| = 0,|§ = 1 and|C| = 0, |§ = 2, respectively. Furthermore, we
only replace a small component by a gadget if this leads tongmavement; that is,
either the number of vertices is reduced, or, in the case efjaal number of vertices,
the number of edges is reduced.

Additionally, we tested a heuristic running time improverh& circumvent a
problem with the data reduction based on 4-cuts: For sontarings the running
time drastically increased because we encountered a casirweith entries having
high values. This increased the number of possible lineabioations and therefore
the running time. An example appeared when the algorithrogesed the regulatory
yeast network: it ran into the cost vect, 8,8,0,31,39,39,31), and therefore the
instance could not be solved within several hours (wherteesuld be solved with-
out 4-cut reduction within minutes). To take advantage afitreductions without
wasting hours of running time through such (rarely occgfyicases, based on ex-

http://theinf1.informatik.uni-jena.de/bsg/

16

Table 1: Comparison of approximaticn (DasGupta et al., 2@dd our exact algo-
rithm. Heret denotes the running time in minutes. For the approximatigorahm,

“k <" is the solution size, andk'>" is the lower bound gained from the approxima-
tion guarantee. The approximation algorithm was run with g&hdomizations.

Approximation Exact alg.

Data set n m k> k< t k t
EGFR 330 855 196 219 7 210 108
Yeast 690 1082 0 43 77 41 1
Macrophage 678 1582 218 383 44 374 1

perimental findings we introduced a new cut-off parametareévprecisely, we stop
the gadget construction if the sum of the entries of a costovés more than 25.
We experimentally show below that this cut-off value is sudfint for the considered
biological and random networks.

As a further comparison point, we implemented an integesairprogramming
(ILP)-based approach based on the following simple ILP:

{ce| e€ E} : binary variables (edge e deleted: yes or no)
{sv|veV} :binary variables (vertex v colored O or 1)

minimizeZEce
ec

s.t.V{vw} € E.:s,+Sy+Cw>1,

Vi{v,w} € E.
V{v,w} € E.
V{v,w} € E.

‘S +Sv—Cw< 1,
'S —Sw+Cw >0,
‘Sw—Sy+Cw>0.

Here, a 1 ince models thatis deleted, and the variablssmodel the coloring of the
balanced graph that remains when deleting all edgeh c. = 1. However, when

solved by GNU GLPKI(Makhoriri, 2004), the ILP was consistgotlitperformed by

the iterative compression approach as soon as the hewgpstedup mentioned in
was employed; therefore, we do not give details greitrmance.

Gene regulatory networkdi\Ve started our experimental investigations with gene reg-
ulatory networks up to the size of about 700 vertices and ntieea 7000 edges.
Unfortunately, it is still very costly to construct real-viddinstances from biological
data, and therefore currently only few instances are availa

We begin with comparing our algorithm to the randomized apjpnation algo-
rithm of IDasGupta et all (2007). The authors considered ¢galatory networks
of yeast and human epidermal growth factor (EGFR). We amttitly examined a
macrophage network (Oda et al., 2004). The three netwoekgraphically displayed
before and after data reductior{in Figute 5 pnd Figlire 6. Bastynetwork is larger
than the EGFR network, but one can immediately see appligadi data reduction
rules in form of many degree-1 and -2 vertices. The resulisotti algorithms are

17

(a) Yeast (b) EGFR (c) Macrophage

Fig. 5: Example gene regulatory networks

N

(a) Yeast (b) EGFR (c) Macrophage

Fig. 6: Gene regulatory networks after data reduction

given in[Tablel. Apart from giving an optimal solution insteof an approximative
one, we could also decrease the running time for the yeashaetbphage networks
from about one hour to less than a minute. Note, however tilgatunning time of
the approximation algorithm could probably be much imprblag implementing it
in a more efficiently executed language, or simply by doinvgeierandomized trials
at the cost of a possibly worse result. For the macrophageoniet we could com-
pute an optimal solution of side= 374. This emphasizes the importance of our data
reduction rules, since for such high solution sizes thaites compression algorithm
(SeciB) cannot be applied directly. Furthermore, hergieinarkable that the data
reduction breaks up the network into several smaller coraptsof up to 70 vertices
that can be solved by iterative compression independemitigreas for the other two
networks only one large component remains after data reduds a further com-
parison point, the ILP-based approach was not able to sbé/thtee instances even
after applying the data reduction.

To investigate the power of our data reduction rules foredéht sizes of the
separatolS, we investigated stepwise in terms ofhe results for the yeast, EGFR,
and macrophage networks. The results are givdnin Tdble @rendettings to 4r

18

Table 2: Size of the largest component remaining and overafiing timet (includ-
ing solution by iterative compression) when reducing oelgarators up to size

Yeast EGFR Macrophage
s n m t n m t n m t
0 690 1080 91s 329 783 >15h 678 1582 > 1day
1 321 709 77s 290 727 >15h 535 1218 >1day
2 173 469 11s 167 468 > 15h 140 397 >1lday
3 155 424 4s 99 283 >15h 113 335 =~ lday
4 ? ? >5h 89 259 108 min 70 228 4.5h
4r 144 405 5.6s 89 260 97 min 70 228 18s

means that we use a cut-off of 25 for the sum of the entries o§avector in the case
of cut sets of size 4. We denote applying our data reductiarsteparator of sizeby
s-reduction

The yeast network can already be solved with improved iterabmpression and
2-reduction. In contrast, the EGFR network cannot be solitiin reasonable time
without also using 3- and 4-reduction. For the macrophageork, the use of 4-cuts
reduces running time severely.

We now investigate 4-reduction with and without cut-offuel For all networks,
we could achieve the best data reduction results by usirgduction: As mentioned
above, for the yeast network the “normal” 4-reduction doesreturn any results
within 5 hours. In contrast to the other entries for which Wwersed the experiments
in[[able2, here the running time is caused by the data reshuittielf and not due to
the iterative compression routine. Therefore, we canna tiie size of the reduced
graph. Setting the cut-off parameter to 25, we obtained staite that is reduced
more than by applying 3-reduction alone. The reason thattilleannot achieve a
better overall running time is the running time for theréduction itself. For the
EGFR network, the size of the largest component barely ahagging from 4- to
4r-reduction, indicating that we do not lose much by the ciitinffact, we achieve
a better overall running time for4Applying 4r-reduction instead of 4-reduction to
the macrophage network does not change the size of the riexgp&ngest component,
but decreases the running time from hours to seconds.

Altogether, we emphasize that we really need the combinatiaata reduction
and the improvements of iterative compression to solvertsances.

We also considered four small regulatory networks obtafrad the Panther path-
ways database (Mi etial., 2005), consisting of about 100ce=rand up to 200 edges.
With 3-reduction we could compute optimal solutions raggimsize from 20 to 28
in split seconds.

Finally, we describe our results for two larger networkg tt@not yet be solved
optimally with our method. For the requlatory network foradi-tike receptor (Oda
and Kitano| 2006), we could reduce the number of verticas 888 to 244 and the
number of edges from 2208 to 1159 within three minutes. Feregulatory network
of the archaeoiethanosarcina barker(Feist et al., 2006), we were less successful.
The number of vertices was decreased from 628 to 500 and timberuof edges

19

Table 3: Reduction effect for random networks. Average &arstances for each
column. Heren is the number of vertices in the original graphjs the number of

vertices after data reductiony is the number of edges after data reduction, taisd

the running time in seconds.

n 100 200 300 400 500 600 700 800 900 1000
m 172.6 336.8 492.4 640.2 791.2 970.6 1108.8 1286.6 1435.6.658

n 29 48.8 75 95 119.8 153.2 169.2 193.4 211.6 239.6
m 102.3 165.8 252 324 3984 518 565.8 6724 734.6 815.8
t 1 7 6 55 6 8.5 8 155 185 155

from 7302 to 6845 in 25 minutes. This could be a hint that thesdestructure of this
network is hard to attack by our data reduction.

Random networksTo further substantiate our experimental results, we geadra
test bed of random graphs with the algorithm described by {2004). We tried to
model the yeast network by choosing the following settitigs:cluster coefficient is
0.016, the distribution of vertex degrees follows power-laithver = —2.2, and the
probability to assigi# to an edge is 26 %.

We generated five instances each for graph sizes ranginglfé@nto 1000 ver-
tices. The number of edges of the generated instancesliglgligore than 15 times
of the number of vertices. We investigated the power of ot deduction by com-
puting the number of vertices and edges of the reduced icessddablel3 shows the
average results for instances of each size. Independdrd ofstance size, about 75%
of the vertices are reduced. Note that this is also true foy#dast network that we try
to model.

The results given ilCTabld 3 are obtained by setting the fiytavameter again
to 25. Redoing the test with a higher threshold of 50 did inaseachange the number
of reduced edges or vertices by more than one, but increasedihning time for
some instances from seconds to several hours.

Considering the size of instances that can be solved optitogimproved itera-
tive compression after data reduction, here the threslesths to be at graphs with
about 500 vertices. Three out of the five instances could tienafly solved in up
to 20 hours, where the sizes of the optimal solutions aredmtw—= 76 andk = 91.
The solution sizes are higher than for the yeast networkchivhas more than 600
vertices and an optimal solution of size 41. Because of this,random instances
seem to be somewhat more difficult than the yeast networlk itgkich is consistent
with observations by DasGupta et al. (2007).

Financial networks.A further real-world application of BLANCED SUBGRAPHarises
in the context of portfolio analysis in risk management @tgret al.| 2002). A port-
folio of securities can be represented as a signed graphthstivertices denoting
the securities and the edges representing the correlagiwvebn the securities. The
balancedness of a subgraph then can be used to rate thetgbditicof the port-
folio. For details of using signed graphs in risk analysisrefer to (Harary et al.,

20

2002). Here we show that our algorithms can be used to contipeitealancedness of
financial networks of up to several hundred vertices.

Data and experimental setup.We used publicly available stock data frdim
nance.yahoo.cono generate market graphs. The stocks are represented bgrthe
tices. For each pair of verticesandv we compute the corresponding correlation coef-
ficientCyy, based on the price fluctuationswéndv in a time range of 90 days (started
at randomly chosen dates in the years 2003 and ﬂ)mf;ormally, two stocks are
positively correlated if they show similar daily fluctuatiin the prespecified time
range and two stocks are negatively correlated if theiydhittuations behave oppo-
sitely. If Cyy is higher than some prespecified threshold we set-atuge between
andv and ifC,y is smaller than the negative threshold we sgtadge. We made test
runs with different threshold values between 0.3 and O#urited out that labelling
the edges in that way led only to trivial instances with mostiedges. We think this
is due to a positive correlation of all pairs of stocks depegdn the general market
situation. To circumvent this effect, we added an offset.66Go all correlation co-
efficients, resulting in graphs with edges of both labelsteNbat the choice of this
offset-value was motivated by a studyi of Boginski etlal. €)00ho observed that the
mean of the distribution of the correlation coefficientsaen all pairs of stocks in
the market was close to 0.05 (for periods of 500 days).

Our test bed consists of subgraphs of a graph based on 524i& gt which
data was available at 2003 and 2004. More precisely, we ralydchose subgraphs
whose sizes range from 60 to 480 vertices in steps of 30. Fdr @ach number of
stocks (60, 90, ..., 480), we generated ten graphs andatestiour experiments to
the largest connected component of each graph.

To compute solutions of BBANCED SUBGRAPH, in all experiments we used
4r-reduction in combination with the improved iterative caegsion routine.

Results.In the following, we present our results with respect to thecess of the
data reduction rules, the solution sizes, and the correpgmunning times. Further,
we discuss some general observations.

In [Figure T, we give the results of the performance of our dathuction for
the correlation threshold values 0.325, 0.35, and 0.37&ll lthree settings, the data
reduction rules apply better for smaller graphs. We asshatdthiis is because, due to
the construction, the density of the graphs seems to inengdl increasing number
of vertices (e. g., 45 vertices/102 edges and 265 verti688/2dges). For the smallest
considered graphs we can reduce the number of vertices bg than 90%; for
graphs up to 100-250 vertices (depending on the thresh@ldpw still reduce about
50 % of the vertices.

The size of the solution computed by the data reduction inbioation with the
iterative compression routine is given[in_Figuie 8. For altiags of the threshold
the size of the solution increases with an increasing nurobegrtices. For a lower
threshold the size of the solution seems to grow faster (&iga threshold of 0.325
there is an instance with 265 vertices and solution size 4&reds for a threshold of
0.375 there is an instance with 393 vertices and solutien31J.

2 The computation of the correlation is based on the logaritifithe daily return. Further, we do not
take into account penny stocks.

21

0.9 — 0.9 08
, 038 S F o087 Foo07q r
X . % 7:\077 - < =u“s,m
:0 % g0 emn 06 1 o t
8907 8% | Bos o g i
£ 0.5 | L 05 1 5 L g .
0.4 F
0.4 1 b 0.4 P o ‘.
c £ 4 L
£0.3 €034 £03
©
1 L J L §02 F
g 0.2 g 0.2 . 50 .
014 . Fo01q &% P01 %, r
B N LI N
0 T T T T T 0 — o e —
0 50 100 150 200 250 300 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400 450
vertices of the input graph # vertices of the input graph # vertices of the input graph
threshold: 0.325 threshold: 0.35 threshold: 0.375

Fig. 7: Data reduction: Theaxis denotes the number of vertices of the original graph,
and they-axis shows the percentage of remaining vertices afterrddiaction.

50 g 50 ————————— 40 44—
45 4 b 454 © b g5 L
40 4 P40 A 3 te
30 | et
® 35 4 Mo 35 4 [o
% 30 1 b3 30 q b N 257 r
S 25 - . 625 F 5§20 E r
S 4 | - 4 L 3
Ros Ros G LR ﬁ *
10 - . bo10 4 Foo10 r
51 ai7 s 1 - s —
ob =t PR — ol
0 50 100 150 200 250 300 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400 450
vertices of the input graph # vertices of the input graph # vertices of the input graph
threshold: 0.325 threshold: 0.35 threshold: 0.375

Fig. 8: Solution size/balancedness: Thaxis denotes the number of vertices of the
original graph, and thg-axis gives the size of an optimal solution.

104 10% 104 S S E—1
0 10° | . b o 10° | el 107 - o b
=} o ° (%] oo
c . e 8
g 102 { . F g 10?4 . [5§ 107 s
3 : 3 g
£ 10t 4 b e 10! . F £t . b
) .) = e o 8 % ot
g 14 . o5 ¢ E g 14 Lo FE 1 Lt : E
2,00 | : L2t Ly N B
£ £ 5 S0t d % L
E 2 E 2 2 .
2102 | F21024 - E 2] o L
10° —_— 10° B e
0 50 100 150 200 250 300 0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 400 450
vertices of the input graph # vertices of the input graph # vertices of the input graph
threshold: 0.325 threshold: 0.35 threshold: 0.375

Fig. 9: Running time: The&-axis denotes the number of vertices of the original graph,
and they-axis denotes the running time in seconds.

22

Table 4: Number of timeouts out of 10 graphs each. Here, thebeu of vertices re-
lates to the number of randomly chosen vertices in the grapktouction and, there-
fore, slightly differ from the size of the largest connectaanponents displayed in
the other figures.

#vertices 210 240 270 300 330 360 390 420 450 480
threshold 0.325 0 6 9 10 10 10 10 10 10 10
threshold 0.35 0 0 1 3 8 10 10 10 10 10
threshold 0.375 0 0 0 0 0 0 1 4 9 10

Information about the corresponding running times is digetl i[Figure . In
our experiments, we set a timeout threshold of one hour. Tingoer of timeouts is
given in[Table . The smaller graphs can usually be solvedss than a second for
all thresholds. More precisely, for a threshold of 0.325 &g solve instances up to
180 vertices, for 0.35 up to 210 vertices, and for 0.375 upl®if up to one second.
In running times up to several minutes we can solve instanpés 400 vertices for
the threshold value 0.375.

In the following, we describe some general observationarndigg the financial
data that may help to explain some of our results.

First, regarding the ratio of- and #-edges, we observed that it seems to be
independent from the graph size, but depends on the choitteedhreshold value.
For a choice of 0.325 the ratio efto £ is about 5:1, for 0.35 about 6:1, and for 0.375
about 7:1. The rising number ef-edges could be an explanation for the decreasing
size of the solutions for increasing values of the thresligdd] Figure]8). Thus, we
think that the better performance for instances generatdgdashigher threshold is
due to two effects. First, the smaller density due to the éiighreshold results in a
stronger reduction of the instances. Second, the smallatiao size (probably due
to the increased ratio of- and #-edges) makes the iterative compression routine
working more effectively.

Second, note that the number of edges for graphs of the samst=ingly differs.
For example, for the threshold of 0.375 there is a graph we \&rtices and 2542
edges and one with the same number of vertices and only 9&&edbis might be
an explanation for the variation of running times for graplith the same number of
vertices (seEFigurg 9).

Finally, we like to mention some test results with threshatlies of 0.3 and 0.4.
Whereas for 0.3 the instances become more difficult to sabeedtill could solve
instances up to 180 vertices) for 0.4 the instances becameletely trivial due to
the fact that the ratio of and#-edges increased and the graphs became very sparse.
(Note the threshold value that was suggested by Boginsk! é2@0%) was even 0.5
for generating the full network. But, as we only consider Breabnetworks, this
threshold seems to be too high to get significant connectegbonents.)

Altogether, we showed that our algorithm can compute ogtaolaitions for non-
trivial financial networks with up to several hundreds oftigas in reasonable time.

23

5 Outlook

There are numerous avenues for future research. DasGuata(200¥) also intro-
duced a directed version of theaABANCED SUBGRAPH problem. The approxima-
tion results are worse than for the undirected ¢case(DasGatml.| 2007), which is
probably why there is no implementation yet. Fortunatélg, directed case can be
reduced to the ¥RTEX BIPARTIZATION problem, which can be solved @&(3%-mn)
time (Reed et all, 2004; Huffner, 2005). Again, this opdwesrbute for experimental
studies. We conclude with some further research posgsilit

— For some applications, weighted edges are of interesgénteeights are clearly
equivalent to multiple edges, which our approach alreadyt@ndle. For the
iterative compression part, it might be possible to handbétrary weights in a
similar way as for CUSTER VERTEX DELETION (Hilffner et al.| 2008).

— An interesting question arising directly from our work, @sibvestigate how one
can minimize the number of edges instead the number of eerticthe gadget
construction.

— EDGE BIPARTIZATION and BALANCED SUBGRAPH still lack a problem kernel
(Guo and Niedermeier, 2007; Niedermkier, 2006) with a riatrsize bound on
the problem kernel size. Perhaps our data reduction schambeca first step in
this direction.

— Chiang et al.l(2007) used the fact thaslBRBNCED SUBGRAPH is polynomial-
time solvable on planar graphs to obtain good results far timearly-planar”
instances. In the spirit of parameterizing according tetatice from triviality”
(Guo et al.| 2004), it would be interesting here to have a fpadhmeter algo-
rithm where the parameter is the “distance from planaritys NP-hard to solve
BALANCED SUBGRAPH for graphs that are planar with already a single vertex
added|(Barahoha, 1980); however, the number of edges add#de minimum
number of crossings of a plane drawing might be a useful peteim

— The theoretical problems in the construction of optimalgd (se&Sect. 2.3.3)
deserve further investigation.

— In principle, our data reduction scheme is applicable tgmph problems where
a coloring of the vertices is sought. This includes problerhere a subset of the
vertices is sought, such asE¥TEX COVER or DOMINATING SET. However, it
remains to find appropriate gadget constructions for problether than BL -

ANCED SUBGRAPH. It seems promising to extend our data reduction scheme to

practical solutions of other graph problems. A loosely tedaapproach—also
based on graph separation but without the gadgeteeringbdwmsused for solv-
ing Steiner tree problems (Polzin and Vahdati Daneshim&i@t)?

— Estivill-Castro et al..(2006, Sect. 3.3) also sketch a galrsgproach to data reduc-
tion rules. In particular, they suggest to use the algetvgicill-Nerode machin-
ery adapted to graph theoty (Fellows and Langston,|1989;niegand Fellows,
1999). It is possible that this approach can be adapted ttatkeof computing
gadgets for arbitrary-sized separators. This might alad te a formal character-
ization of graphs for which our separation-based data tamluscheme is useful.
This is clearly an interesting area of further research.

24

— Using iterative compression Razgon and O'Sullivan (20G&ershown the prob-
lem of deleting the minimum number of clauses from a 2CNnfdea such that it
becomes satisfiable to be fixed-parameter tractable wigieot$o the parameter
“number of deleted clauses”. This problem is structurailiyilsr to BALANCED
SUBGRAPH, and perhaps similar data reductions can be developed.

Acknowledgements We thank the authors of DasGupta et al. (2007) for making #wirce code avail-
able. Further, we thank our students Manuel Sorge, Tamaijg&t and Thomas Zichner for help with the
experiments and Jifi MatouSek (Prague) for helpfulnexiees for the integer linear combination problem.
Our work has been supported by the Deutsche Forschungsgmshaft, Emmy Noether research group
PIAF (fixed-parameter algorithms, NI 369/4), project PEAdaameterized complexity and exact algo-
rithms, NI 369/1), project ITKO (iterative compression fmiving hard network problems, NI 369/5), and
project DARE (data reduction and problem kernels, GU 102%alk Huffner was partly supported by a
fellowship of the Edmond J. Safra bioinformatic program.

References

Abu-Khzam FN, Collins RL, Fellows MR, Langston MA, Suters WElymons CT
(2004) Kernelization algorithms for the vertex cover peshl Theory and experi-
ments. In: Proceedings of the 6th Workshop on Algorithm Bagiing and Exper-
iments (ALENEX '04), SIAM, pp 62—69

Abu-Khzam FN, Fellows MR, Langston MA, Suters WH (2007) Crogtructures
for vertex cover kernelization. Theory of Computing Syssefi(3):411-430

Agarwal A, Charikar M, Makarychev K, Makarychev Y (2006)/logn) approx-
imation algorithms for min UnCut, min 2CNF deletion, andedited cut prob-
lems. In: Proceedings of the 37th ACM Symposium on Theory om@uting
(STOC '05), ACM, pp 573-581

Antal T, Krapivsky PL, Redner S (2006) Social balance on oeks: The dynamics
of friendship and enmity. Physica D: Nonlinear Phenomerg222):130-136

Avidor A, Langberg M (2007) The multi-multiway cut problemheoretical Com-
puter Science 377(1-3):35-42

Barahona F (1980) On the complexity of max cut. Tech. Rep, MAG, Université
Joseph Fourier, Grenoble, France

Barahona F (1982) On the computational complexity of Isjig glass models. Jour-
nal of Physics A: Mathematics and General 15(10):3241-3253

Barahona F, Ridha Mahjoub A (1989) Facets of the balancegti{eginduced sub-
graph polytope. Mathematical Programming 45(1-3):21-33

Barvinok Al, Woods K (2003) Short rational generating fuanos for lattice point
problems. Journal of the American Mathematical Societf1667—979

Bodlaender HL, Koster AMCA (2008) Combinatorial optimimat on graphs of
bounded treewidth. The Computer Journal 51:255-269

Boginski V, Butenko S, Pardalos PM (2005) Statistical asialpf financial networks.
Computational Statistics & Data Analysis 48(2):431-443

Boginski V, Butenko S, Pardalos PM (2006) Mining market d&anetwork ap-
proach. Computers and Operations Research 33(11):3184-31

25

Boros E, Hammer PL (1991) The max-cut problem and quadratic dptimiza-
tion; polyhedral aspects, relaxations and bounds. Anrfa@perations Research
33(3):151-180

Chen J, Kanj IA, Jia W (2001) Vertex cover: Further obseoradiand further im-
provements. Journal of Algorithms 41(2):280-301

Chiang C, Kahng AB, Sinha S, Xu X, Zelikovsky AZ (2007) Fastl &fficient bright-
field AAPSM conflict detection and correction. IEEE Trangats on Computer-
Aided Design of Integrated Circuits and Systems 26(1):126-

Coleman T, Saunderson J, Wirth A (2008) A local-search Z@pmation for 2-
correlation-clustering. In: Proceedings of the 16th Arritiaropean Symposium
on Algorithms (ESA '08), Springer, LNCS, vol 5193, pp 308931

DasGupta B, Enciso GA, Sontag ED, Zhang Y (2007) Algorithiame complex-
ity results for decompositions of biological networks immnotone subsystems.
Biosystems 90(1):161-178

Downey RG, Fellows MR (1999) Parameterized Complexityir&mar

Estivill-Castro V, Fellows MR, Langston MA, Rosamond FA (&) FPT is P-time
extremal structure I. In: Proceedings of the 1st Algorithamsl Complexity in
Durham Workshop (ACID '06), College Publications, Textiigorithmics, vol 4,
pp 1-41

Feist AM, Scholten JCM, Palsson B@, Brockman FJ, Ideker TO§2Modeling
methanogenesis with a genome-scale metabolic recoristmadtMethanosarcina
barkeri. Molecular Systems Biology 2:2006.0004

Fellows MR, Langston MA (1989) An analogue of the Myhill-ldde theorem and
its use in computing finite-basis characterizations. locBedings of the 30th An-
nual IEEE Symposium on Foundations of Computer Science &@8), IEEE,
pp 520-525

Flum J, Grohe M (2006) Parameterized Complexity Theoryirger

Gabow HN (2000) Path-based depth-first search for strondbamhnected compo-
nents. Information Processing Letters 74(3-4):107-114

Goemans MX, Williamson DP (1995) Improved approximatiogogithms for max-
imum cut and satisfiability problems using semidefinite pangming. Journal of
the ACM 42(6):1115-1145

Grotschel M, Pulleyblank WR (1981) Weakly bipartite gragmd the max-cut prob-
lem. Operations Research Letters 1(1):23-27

Guo J, Niedermeier R (2007) Invitation to data reduction arablem kernelization.
ACM SIGACT News 38(1):31-45

Guo J, Huffner F, Niedermeier R (2004) A structural view @argmeterizing prob-
lems: Distance from triviality. In: Proceedings of the lsternational Workshop
on Parameterized and Exact Computation (IWPEC '04), SprindNCS, vol 3162,
pp 162-173

Guo J, Gramm J, Huffner F, Niedermeier R, Wernicke S (20@8h@ression-based
fixed-parameter algorithms for feedback vertex set and bigetization. Journal
of Computer and System Sciences 72(8):1386-1396

Guo J, Moser H, Niedermeier R (2008) Iterative compressioeXactly solving NP-
hard minimization problems. In: Proceedings of the DFG SPEsTAlgorithmics
of Large and Complex Networks”, Springer, LNCS, to appear

26

Gutwenger C, Mutzel P (2000) A linear time implementationS®fQR-trees. In:
Proceedings of the 8th International Symposium on Graptwibiga (GD '00),
Springer, LNCS, vol 1984, pp 77-90

Harary F (1953) On the notion of balance of a signed graphhldan Mathematical
Journal 2(2):143-146

Harary F (1959) On the measurement of structural balanchaBeral Science
4(4):316-323

Harary F, Lim MH, Wunsch DC (2002) Signed graphs for portdanalysis in risk
management. IMA Journal of Management Mathematics 13§3):210

Henzinger MR, Rao S, Gabow HN (2000) Computing vertex cotivigc New
bounds from old techniques. Journal of Algorithms 43(22:2250

Hicks IV, Koster AMCA, Kolotoglu E (2005) Branch and treeadenposition tech-
nigues for discrete optimization. In: TutORials 2005, Tidts in Operations Re-
search, INFORMS, pp 1-29

Hopcroft JE, Tarjan RE (1973) Dividing a graph into triconteel components. SIAM
Journal on Computing 2(3):135-158

Huffner F (2005) Algorithm engineering for optimal grapip#rtization. In: Proceed-
ings of the 4th International Workshop on Experimental affetiént Algorithms
(WEA'05), Springer, LNCS, vol 3503, pp 240-252, extendexsiom to appear in
Journal of Graph Algorithms and Applications

Huffner F (2007) Algorithms and experiments for paramietat approaches to hard
graph problems. PhD thesis, Institut fur Informatik, Erieh-Schiller-Universitat
Jena

Huffner F, Komusiewicz C, Moser H, Niedermeier R (2008)déxparameter algo-
rithms for cluster vertex deletion. In: Proceedings of thie 8atin American The-
oretical Informatics Symposium (LATIN '08), Springer, LNBCvol 4598, pp 711—
722, extended version to appeafTiheory of Computing Systems

Khot S (2002) On the power of unique 2-prover 1-round gamresPtoceedings of
the 34th ACM Symposium on Theory of Computing (STOC '02), AQd 767—
775

K&nig D (1936) Theorie der endlichen und unendlichen Gesp\kademische Ver-
lagsgesellschaft, Leipzig, English translati@heory of Finite and Infinite Graphs
Birkhauser, 1990

Leroy X, Vouillon J, Doligez D, et al. (1996) The Objective i@bsystem. Available
on the webhttp://caml.inria.fr/ocaml/

Makhorin A (2004) GNU Linear Programming Kit Reference MahWersion 4.8.
Department of Applied Informatics, Moscow Aviation Insti¢

Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff Rabkin S, Guo N,
Muruganujan A, Doremieux O, Campbell MJ, Kitano H, Thomas(R2005) The
PANTHER database of protein families, subfamilies, fumtsiand pathways. Nu-
cleic Acids Research 33(Supplement 1):284-288

Niedermeier R (2006) Invitation to Fixed-Parameter Algaris. Oxford University
Press

Oda K, Kitano H (2006) A comprehensive map of the toll-likeeptor signaling
network. Molecular Systems Biology 2:2006.0015

http://caml.inria.fr/ocaml/

27

Oda K, Kimura T, Matsuoka Y, Funahashi A, Muramatsu M, Kit&h(2004) Molec-
ular interaction map of a macrophage. AfCS Research Repdrds

Papadimitriou CH, Yannakakis M (1991) Optimization, apgneation, and complex-
ity classes. Journal of Computer and System Sciences 428)440

Polzin T, Vahdati Daneshmand S (2006) Practical partitigrhased methods for the
Steiner problem. In: Proceedings of the 4th Internationaik&hop on Experimen-
tal and Efficient Algorithms (WEA '06), Springer, LNCS, vod@7, pp 241-252

Razgon |, O’Sullivan B (2008) Almost 2-SAT is fixed-paramett@actable. In: Pro-
ceedings of the 35th International Colloquium on Automatenguages and Pro-
gramming (ICALP '08), Springer, LNCS, vol 5125, pp 551-562

Reed B, Smith K, Vetta A (2004) Finding odd cycle transvers@perations Research
Letters 32(4):299-301

Sturmfels B (1996) Grobner Bases and Convex Polytopesddsity Lecture Series,
vol 8. American Mathematical Society

Thagard P, Verbeurgt K (1998) Coherence as constrainfaetitn. Cognitive Sci-
ence 22(1):1-24

Volz E (2004) Random networks with tunable degree distitbuand clustering.
Physical Review E 70(5):056115

Wernicke S (2003) On the algorithmic tractability of singlecleotide polymorphism
(SNP) analysis and related problems. Diplomarbeit, With&chickard-Institut
fur Informatik, Universitat Tubingen

Yannakakis M (1981) Edge-deletion problems. SIAM Journal @omputing
10(2):297-309

Zaslavsky T (1998) Bibliography of signed and gain graphslecE
tronic Journal of Combinatorics DS8, updated version aMbddl at
http://www.math.binghamton.edu/zaslav/Bsg/.

http://www.math.binghamton.edu/zaslav/Bsg/

	Introduction
	Data Reduction
	Fixed-Parameter Tractability
	Implementation and experiments
	Outlook

