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Power system observability

In power systems, one wants to know certain states, such as:

Voltage V at some point or
Power P at some point.

Placing one measuring device per state is not feasible.

Often, states can be calculated from measurements at other
points, exploiting Kirchhoff’s circuit laws and similar rules.

A power system is called observable if all states are measured
or can be calculated.
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Measurement Jacobian

The measurement Jacobian stores the “sensitivity” ∂y/∂x of a
measurement y with respect to a state x .

States

P(E) Q(E) Tap(C) P(G) Q(G)

M
ea

su
re

m
en

ts

V (A) 0 0 0 0 0
P(B) 1 0 0 1 0
Q(B) 0 1 0 0 1
P(D) −1 0 0 −1 0
Q(D) 0 −1 0 0 −1
V (E) 0 0 −1 0 0
P(F) 1 0 0 0 0
Q(F) 0 1 0 0 0
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Measurement Jacobian

Lemma ([Monticelli&Wu, IEEE Trans. Power Appar. Syst 1985])

If two rows of the measurement Jacobian are linearly dependent,
then one measuring device is redundant.

Theorem ([Monticelli&Wu, IEEE Trans. Power Appar. Syst 1985])

A given set of n states in a network is observable by a set of
m measurements iff the m × n measurement Jacobian has full
rank n.

Corollary

One can decide in O(n3) time whether a power system is
observable by Gaussian elimination.

Brosemann et al. (Uni Jena) Matrix Robustness, with an Application to Power System Observability ACiD ’06 5/17



Power system observability Complexity of Matrix Robustness Algorithms for Matrix Robustness Experiments

Measurement Jacobian

Lemma ([Monticelli&Wu, IEEE Trans. Power Appar. Syst 1985])

If two rows of the measurement Jacobian are linearly dependent,
then one measuring device is redundant.

Theorem ([Monticelli&Wu, IEEE Trans. Power Appar. Syst 1985])

A given set of n states in a network is observable by a set of
m measurements iff the m × n measurement Jacobian has full
rank n.

Corollary

One can decide in O(n3) time whether a power system is
observable by Gaussian elimination.

Brosemann et al. (Uni Jena) Matrix Robustness, with an Application to Power System Observability ACiD ’06 5/17



Power system observability Complexity of Matrix Robustness Algorithms for Matrix Robustness Experiments

Measurement Jacobian

Lemma ([Monticelli&Wu, IEEE Trans. Power Appar. Syst 1985])

If two rows of the measurement Jacobian are linearly dependent,
then one measuring device is redundant.

Theorem ([Monticelli&Wu, IEEE Trans. Power Appar. Syst 1985])

A given set of n states in a network is observable by a set of
m measurements iff the m × n measurement Jacobian has full
rank n.

Corollary

One can decide in O(n3) time whether a power system is
observable by Gaussian elimination.

Brosemann et al. (Uni Jena) Matrix Robustness, with an Application to Power System Observability ACiD ’06 5/17



Power system observability Complexity of Matrix Robustness Algorithms for Matrix Robustness Experiments

Measurement Jacobian

States

P(E) Q(E) Tap(C) P(G) Q(G)

M
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su
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V (A) 0 0 0 0 0
P(B) 1 0 0 1 0
Q(B) 0 1 0 0 1
P(D) −1 0 0 -1 0
Q(D) 0 −1 0 0 −1
V (E) 0 0 −1 0 0
P(F) 1 0 0 0 0
Q(F) 0 1 0 0 0
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States
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Rank 5 ⇒ Power system is observable.
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Robust observability

Measurements may fail over time or be down due to maintenance.

Definition (Robust Power System Observability)

Instance: An observable network and an integer k > 0.
Question: Is the network still observable after the outage of k
arbitrary measurements?

By the main theorem, this is equivalent to:

Definition (Matrix Robustness)

Instance: An m × n matrix M over an arbitrary field F with full
rank n, m ≥ n, and an integer k > 0.
Question: Is M robust against deletion of k rows, that is, is the
rank of M preserved if any k rows are deleted?
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Matrix Weakness

For simplicity, we consider the complement Matrix Weakness.

Definition (Matrix Weakness)

Instance: An m × n matrix M over an arbitrary field F with full
rank n, m ≥ n, and an integer k > 0.
Question: Can we find k rows such that M drops in rank when
they are deleted?
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Generalized Minimum Circuit

Definition (Generalized Minimum Circuit)

Instance: An m × n matrix M over an arbitrary field and a
positive integer k.
Question: Is there a linearly dependent subset of the column
vectors of M with at most k elements?

Using matroid theory, one can show:

Theorem

Matrix Weakness on a field F is many-one equivalent to
Generalized Minimum Circuit on F. The matrices of both
problems can be transformed into each other in polynomial time.
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Complexity of Matrix Robustness

Generalized Minimum Circuit in turn is equivalent to
Generalized Minimum Distance from coding theory, which is
known to be NP-complete for any finite field
[Vardy, IEEE Trans. Inform. Theory ’97].

Corollary

Matrix Robustness is coNP-complete for any finite field.

Complexity for infinite fields (such as Z for our application) is
open.
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Mixed-integer formulation

Definition (Most Comprehensive Hyperplane)

Instance: An m × n matrix M over an arbitrary field F with full
rank n, m ≥ n and an integer k > 0.
Question: Is there a hyperplane in the vector space Fn

containing at least n − k row vectors of M?

Variables:
hyperplane H, represented by its normal vector x
binary variables di with di = 0 iff yi lies in the hyperplane H

Goal: minimize
∑

i di

Central constraints:

〈yi , x〉 − di ≤ 0

−1 · 〈yi , x〉 − di ≤ 0

assuming ||yi || ≤ 1 and ||x || ≤ 1.
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Pseudorank

Pseudorank is a simplification of the rank concept that considers
only pairwise linear dependencies.

Definition

The pseudorank is the minimum of the number of rows and the
number of columns after exhaustive elimination of pairwise linear
dependencies both within rows and within columns.

Empirical observation

Using pseudorank instead of rank for the observability of power
networks is often sufficient (rank often equals pseudorank).

Idea

Use pseudorank robustness as a heuristic for robustness.
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Pseudorank-based heuristic

If an m × n-matrix M is to be not robust in terms of pseudorank,
then one of three conditions must hold:

1 After deleting k rows, there is a zero column.
2 After deleting k rows and then eliminating pairwise linearly

dependent rows, there are less than n rows left.
3 After deleting k rows, there are two dependent columns.

We check condition 3 separately for all pairs (Mi ,Mj) of columns,
that is, we try to determine a factor c such that Mj = c ·Mi after
deleting k rows.

Theorem

Matrix Robustness with respect to the pseudorank can be
solved in O(s ·m log m) time for an m × n-matrix, where s is the
number of nonzero matrix entries.
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Electrical networks
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Electrical networks

Runtime in seconds

Dimension k MIP Pseudorank

Treelike 18×8 2 0.05 0.02
MV/LV 78×12 2 0.15 0.04
Nine-Bus 40×12 4 17.61 0.03
IEEE Std 399-1997 150×29 2 1.18 0.15
Namibia 411×164 1 477.09 4.70
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Random instances

Random matrices of size 5n× n, with entries from {−9, . . . , 9} and
80 % sparsity (each point average over 20 instances)
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Summary

Robust power system observability can be framed as a matrix
problem

A MIP formulation provides optimal solutions

A heuristic based on pseudoranks does very well in practice

Open questions:

Is Matrix Robustness also hard for infinite fields?

Is Matrix Robustness fixed-parameter tractable with
respect to the number of deletions?
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