Power system observability	Complexity of Matrix Robustness oo	Algorithms for Matrix Robustness	Experiments 0000

Matrix Robustness, with an Application to Power System Observability

Matthias Brosemann Jochen Alber <u>Falk Hüffner</u> Rolf Niedermeier

Friedrich-Schiller-Universität Jena

2nd Algorithms and Complexity in Durham Workshop September 2006

Power syste	n observability	
000000		

Algorithms for Matrix Robustness

Experiments

- F

Outline

Power system observability

2 Complexity of Matrix Robustness

3 Algorithms for Matrix Robustness

- Mixed-integer program (MIP)
- Pseudorank-based heuristic

4 Experiments

Power	system	observability
0000	00	

Algorithms for Matrix Robustness

Experiments

Power system observability

- In power systems, one wants to know certain states, such as:
 - Voltage V at some point or
 - Power P at some point.

Power	system	observability
0000	00	

Algorithms for Matrix Robustness

Experiments

Power system observability

- In power systems, one wants to know certain states, such as:
 - Voltage V at some point or
 - Power P at some point.
- Placing one measuring device per state is not feasible.

Power	system	observability
0000	00	

Algorithms for Matrix Robustness

Experiments

Power system observability

- In power systems, one wants to know certain states, such as:
 - Voltage V at some point or
 - Power P at some point.
- Placing one measuring device per state is not feasible.
- Often, states can be calculated from measurements at other points, exploiting Kirchhoff's circuit laws and similar rules.

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

Experiments

Power system observability

- In power systems, one wants to know certain states, such as:
 - Voltage V at some point or
 - Power P at some point.
- Placing one measuring device per state is not feasible.
- Often, states can be calculated from measurements at other points, exploiting Kirchhoff's circuit laws and similar rules.
- A power system is called observable if all states are measured or can be calculated.

・ 同・ ・ ヨ・・・

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

イロト イポト イヨト イヨト

3

590

Experiments

Measurement Jacobian

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

Experiments

Measurement Jacobian

The measurement Jacobian stores the "sensitivity" $\partial y/\partial x$ of a measurement y with respect to a state x.

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

A E > A E >

- ∢ /⊐) >

Experiments

Measurement Jacobian

Lemma ([Monticelli&Wu, IEEE Trans. Power Appar. Syst 1985])

If two rows of the measurement Jacobian are linearly dependent, then one measuring device is redundant.

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

Experiments

Measurement Jacobian

Lemma ([Monticelli&Wu, IEEE Trans. Power Appar. Syst 1985])

If two rows of the measurement Jacobian are linearly dependent, then one measuring device is redundant.

Theorem ([Monticelli&Wu, IEEE Trans. Power Appar. Syst 1985])

A given set of n states in a network is observable by a set of m measurements iff the $m \times n$ measurement Jacobian has full rank n.

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

Experiments

Measurement Jacobian

Lemma ([Monticelli&Wu, IEEE Trans. Power Appar. Syst 1985])

If two rows of the measurement Jacobian are linearly dependent, then one measuring device is redundant.

Theorem ([Monticelli&Wu, IEEE Trans. Power Appar. Syst 1985])

A given set of n states in a network is observable by a set of m measurements iff the $m \times n$ measurement Jacobian has full rank n.

Corollary

One can decide in $O(n^3)$ time whether a power system is observable by Gaussian elimination.

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

Measurement Jacobian

Brosemann et al. (Uni Jena) Matrix Robustness, with an Application to Power System Observability ACiD '06

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

Measurement Jacobian

Brosemann et al. (Uni Jena) Matrix Robustness, with an Application to Power System Observability ACiD '06

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

Experiments 0000

Measurement Jacobian

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

イロト イポト イヨト イヨト

Experiments

Robust observability

Measurements may fail over time or be down due to maintenance.

Definition (ROBUST POWER SYSTEM OBSERVABILITY)

Instance: An observable network and an integer k > 0. **Question:** Is the network still observable after the outage of k arbitrary measurements?

イロト 人間ト イヨト イヨト

Robust observability

Measurements may fail over time or be down due to maintenance.

Definition (ROBUST POWER SYSTEM OBSERVABILITY)

Instance: An observable network and an integer k > 0. **Question:** Is the network still observable after the outage of k arbitrary measurements?

By the main theorem, this is equivalent to:

Definition (MATRIX ROBUSTNESS)

Instance: An $m \times n$ matrix M over an arbitrary field \mathbb{F} with full rank $n, m \ge n$, and an integer k > 0. **Question:** Is M robust against deletion of k rows, that is, is the rank of M preserved if any k rows are deleted?

Power	system	observability
0000	00	

Algorithms for Matrix Robustness

Matrix Weakness

For simplicity, we consider the complement MATRIX WEAKNESS.

Definition (MATRIX WEAKNESS)

Instance: An $m \times n$ matrix M over an arbitrary field \mathbb{F} with full rank $n, m \ge n$, and an integer k > 0. **Question:** Can we find k rows such that M drops in rank when they are deleted?

Algorithms for Matrix Robustness

イロト 人間ト イヨト イヨト

Generalized Minimum Circuit

Definition (GENERALIZED MINIMUM CIRCUIT)

Instance: An $m \times n$ matrix M over an arbitrary field and a positive integer k.

Question: Is there a linearly dependent subset of the column vectors of *M* with at most *k* elements?

Using matroid theory, one can show:

Theorem

MATRIX WEAKNESS on a field \mathbb{F} is many-one equivalent to GENERALIZED MINIMUM CIRCUIT on \mathbb{F} . The matrices of both problems can be transformed into each other in polynomial time.

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

イロト イポト イヨト イヨト

Experiments

Complexity of Matrix Robustness

[VARDY, IEEE Trans. Inform. Theory '97].

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

A E F A E F

Experiments

Complexity of Matrix Robustness

[VARDY, IEEE Trans. Inform. Theory '97].

Corollary

MATRIX ROBUSTNESS is coNP-complete for any finite field.

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

イロト 人間ト イヨト イヨト

Experiments

Complexity of Matrix Robustness

[VARDY, IEEE Trans. Inform. Theory '97].

Corollary

MATRIX ROBUSTNESS is coNP-complete for any finite field.

Complexity for infinite fields (such as $\ensuremath{\mathbb{Z}}$ for our application) is open.

Algorithms for Matrix Robustness

Experiments

Mixed-integer formulation

Definition (MOST COMPREHENSIVE HYPERPLANE)

Instance: An $m \times n$ matrix M over an arbitrary field \mathbb{F} with full rank $n, m \ge n$ and an integer k > 0. **Question:** Is there a hyperplane in the vector space \mathbb{F}^n containing at least n - k row vectors of M?

Algorithms for Matrix Robustness

イロト 不得 トイヨト イヨト 二日

Mixed-integer formulation

Definition (MOST COMPREHENSIVE HYPERPLANE)

Instance: An $m \times n$ matrix M over an arbitrary field \mathbb{F} with full rank $n, m \ge n$ and an integer k > 0. **Question:** Is there a hyperplane in the vector space \mathbb{F}^n containing at least n - k row vectors of M?

- Variables:
 - hyperplane H, represented by its normal vector x
 - binary variables d_i with $d_i = 0$ iff y_i lies in the hyperplane H
- Goal: minimize $\sum_i d_i$
- Central constraints:

$$egin{aligned} & \langle y_i, x
angle - d_i \leq 0 \ -1 \cdot \langle y_i, x
angle - d_i \leq 0 \end{aligned}$$

assuming $||y_i|| \leq 1$ and $||x|| \leq 1$.

Power system observability	Complexity of Matrix Robustness	Algorithms for Matrix Robustness ○●○	Experiments 0000
Pseudorank			

Pseudorank is a simplification of the rank concept that considers only *pairwise* linear dependencies.

Definition

The **pseudorank** is the minimum of the number of rows and the number of columns after exhaustive elimination of pairwise linear dependencies both within rows and within columns.

A E F A E F

Power system observability	Complexity of Matrix Robustness	Algorithms for Matrix Robustness	Experiments
	OO	○●○	0000
Pseudorank			

Pseudorank is a simplification of the rank concept that considers only *pairwise* linear dependencies.

Definition

The **pseudorank** is the minimum of the number of rows and the number of columns after exhaustive elimination of pairwise linear dependencies both within rows and within columns.

Empirical observation

Using pseudorank instead of rank for the observability of power networks is often sufficient (rank often equals pseudorank).

Idea

Use pseudorank robustness as a heuristic for robustness.

イロト イポト イヨト イヨト

Algorithms for Matrix Robustness

イロト イポト イヨト イヨト

Pseudorank-based heuristic

If an $m \times n$ -matrix M is to be not robust in terms of pseudorank, then one of three conditions must hold:

- After deleting k rows, there is a zero column.
- After deleting k rows and then eliminating pairwise linearly dependent rows, there are less than n rows left.
- After deleting k rows, there are two dependent columns.

イロト イポト イヨト イヨト

3

Pseudorank-based heuristic

If an $m \times n$ -matrix M is to be not robust in terms of pseudorank, then one of three conditions must hold:

- After deleting k rows, there is a zero column.
- After deleting k rows and then eliminating pairwise linearly dependent rows, there are less than n rows left.
- After deleting k rows, there are two dependent columns.

We check condition 3 separately for all pairs (M_i, M_j) of columns, that is, we try to determine a factor c such that $M_j = c \cdot M_i$ after deleting k rows.

Theorem

MATRIX ROBUSTNESS with respect to the pseudorank can be solved in $O(s \cdot m \log m)$ time for an $m \times n$ -matrix, where s is the number of nonzero matrix entries.

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

Experiments •000

3

DQC

Electrical networks

Brosemann et al. (Uni Jena) Matrix Robustness, with an Application to Power System Observability ACiD '06 14/17

Complexity of Matrix Robustness

Algorithms for Matrix Robustness

イロト イヨト イヨト イヨト

1

590

Experiments

Electrical networks

			Runtime in seconds	
	Dimension	k	MIP	Pseudorank
Treelike	18×8	2	0.05	0.02
MV/LV	78×12	2	0.15	0.04
Nine-Bus	40×12	4	17.61	0.03
IEEE Std 399-1997	150×29	2	1.18	0.15
Namibia	411×164	1	477.09	4.70

Power system observability	Complexity of Matrix Robustness	Algorithms for Matrix Robustness	Experiments

Random instances

Random matrices of size $5n \times n$, with entries from $\{-9, \ldots, 9\}$ and 80% sparsity (each point average over 20 instances)

16/17

Power system observability	Complexity of Matrix Robustness	Algorithms for Matrix Robustness	Experiments
Summary			

- Robust power system observability can be framed as a matrix problem
- A MIP formulation provides optimal solutions
- A heuristic based on pseudoranks does very well in practice

Open questions:

- Is MATRIX ROBUSTNESS also hard for infinite fields?
- IS MATRIX ROBUSTNESS fixed-parameter tractable with respect to the number of deletions?

(4 回 ト 4 ヨ ト 4 ヨ ト