# Algorithm Engineering for Optimal Graph Bipartization 

Jiong Guo Jens Gramm Falk Hüffner Rolf Niedermeier Sebastian Wernicke

Institut für Informatik<br>Friedrich-Schiller-Universität Jena

Dagstuhl Seminar № 05301: Exact Algorithms and Fixed-Parameter Tractability

## Outline

Introduction and Motivation

Iterative Compression for Graph Bipartization
An $O^{*}\left(2^{k}\right)$-time algorithm for Edge Bipartization
An $O^{*}\left(3^{k}\right)$-time algorithm for Vertex Bipartization

Experimental Results for Vertex Bipartization
Runtime Improvements

## DNA Sequence Assembly

Cells have two slightly different copies of each chromosome


## DNA Sequence Assembly

Assignments of the fragments to copies are initially unknown


## DNA Sequence Assembly

Pairwise conflicts indicate that two fragments are from different copies


## DNA Sequence Assembly

Pairwise conflicts indicate that two fragments are from different copies


## DNA Sequence Assembly

Reconstruction of assignment from the bipartite conflict graph


## Minimum Fragment Removal

In practise, contaminations occur.

$\bigcirc$


## Minimum Fragment Removal

Contamination fragments will conflict with fragments from both copies.


## Minimum Fragment Removal

The task is to recognize contamination fragments.


## Formalization as Vertex Bipartization

Vertex Bipartization
Input: An undirected graph $G=(V, E)$ and a nonnegative integer $k$.
Task: Find a subset $C \subseteq V$ of vertices with $|C| \leq k$ such that $G[V \backslash C]$ is bipartite.

## Formalization as Vertex Bipartization

Vertex Bipartization
Input: An undirected graph $G=(V, E)$ and a nonnegative integer $k$.
Task: Find a subset $C \subseteq V$ of vertices with $|C| \leq k$ such that $G[V \backslash C]$ is bipartite.

Equivalent formulation:
Odd Cycle Cover
Task: Find a subset $C \subseteq V$ of vertices with $|C| \leq k$ such that $C$ touches every odd length cycle in $G$.

## Formalization as Vertex Bipartization

Vertex Bipartization
Input: An undirected graph $G=(V, E)$ and a nonnegative integer $k$.
Task: Find a subset $C \subseteq V$ of vertices with $|C| \leq k$ such that $G[V \backslash C]$ is bipartite.

Equivalent formulation:
Odd Cycle Cover
Task: Find a subset $C \subseteq V$ of vertices with $|C| \leq k$ such that $C$ touches every odd length cycle in $G$.

Edge Bipartization: Equivalent problem for deleting edges (parametric dual of MaxCut)

## Vertex Bipartization and Edge Bipartization

- Numerous applications in computational biology, VLSI, register allocation, ...


## Vertex Bipartization and Edge Bipartization

- Numerous applications in computational biology, VLSI, register allocation, ...
- NP-complete
[Lewis\&Yannakakis, J. Comput. Syst. Sci. 1980]


## Vertex Bipartization and Edge Bipartization

- Numerous applications in computational biology, VLSI, register allocation, ...
- NP-complete
[Lewis\&Yannakakis, J. Comput. Syst. Sci. 1980]
- MaxSNP-hard
[Papadimitriou\&Yannakakis, J. Comput. Syst. Sci. 1991]


## Vertex Bipartization and Edge Bipartization

- Numerous applications in computational biology, VLSI, register allocation, ...
- NP-complete
[Lewis\&Yannakakis, J. Comput. Syst. Sci. 1980]
- MaxSNP-hard [Papadimitriou\&Yannakakis, J. Comput. Syst. Sci. 1991]
- Best known approximation is by a factor of $\log |V|$ [Garg, Vazirani\&Yannakakis, SIAM J. Comput. 1996]


## Vertex Bipartization and Edge Bipartization

- Numerous applications in computational biology, VLSI, register allocation, ...
- NP-complete
[Lewis\&Yannakakis, J. Comput. Syst. Sci. 1980]
- MaxSNP-hard [Papadimitriou\&Yannakakis, J. Comput. Syst. Sci. 1991]
- Best known approximation is by a factor of $\log |V|$ [Garg, Vazirani\&Yannakakis, SIAM J. Comput. 1996]
- Fixed-parameter tractable with respect to $k$
[Reed, Smith\&Vetta, Oper. Res. Lett. 2004]


## Iterative Compression

Idea: Use a compression routine iteratively.
Compression routine: Given a size- $(k+1)$ solution, either computes a size- $k$ solution or proves that there is no size- $k$ solution.

## Iterative Compression

Idea: Use a compression routine iteratively.
Compression routine: Given a size- $(k+1)$ solution, either computes a size- $k$ solution or proves that there is no size- $k$ solution.

Algorithm:
Start with empty graph $G^{\prime}$ and empty edge bipartization set $C$ For each edge $e$ in $G$ :

Add $e$ to both $G^{\prime}$ and $C$
Compress $C$ using the compression routine

## Iterative Compression for Edge Bipartization

Preprocessing for the compression routine: Transform the input such that one can assume w.l.o.g. that the smaller solution is disjoint from the known one.


## Comparing Disjoint Edge Bipartization Sets



## Comparing Disjoint Edge Bipartization Sets



$$
\Phi:=\left\{\begin{array}{l}
\bigcirc \text { for }(\bullet, \bigcirc) \text { or }(\mathrm{O}, \bullet) \\
\bullet \text { for }(\bullet, \bullet) \text { or }(\mathrm{O}, \mathrm{O})
\end{array}\right.
$$

## Comparing Disjoint Edge Bipartization Sets



$$
\Phi:=\left\{\begin{array}{l}
\bigcirc \text { for }(\bigcirc, \bigcirc) \text { or }(\bigcirc, \bigcirc) \\
\bigcirc \text { for }(\bigcirc, \bigcirc) \text { or }(\bigcirc, \bigcirc)
\end{array}\right.
$$

## $\{$ i $\}$ is an edge cut between $\{0\}$ and $\{\bullet\}$

## Discovering a smaller edge bipartization set

Given: $G=(V, E)$ and an edge bipartization $C \subseteq E$ without redundant edges (:

## Discovering a smaller edge bipartization set



Given: $G=(V, E)$ and an edge bipartization $C \subseteq E$ without redundant edges (:

- Guess $\Phi$ at the endpoints of the edges in $C$


## Discovering a smaller edge bipartization set



Given: $G=(V, E)$ and an edge bipartization $C \subseteq E$ without redundant edges (:

- Guess $\Phi$ at the endpoints of the edges in $C$
- Find a minimum edge cut between $\{O\}$ and $\{\bullet\}$ with the Edmonds-Karp MaxFlow algorithm


## Discovering a smaller edge bipartization set



Given: $G=(V, E)$ and an edge bipartization $C \subseteq E$ without redundant edges (:

- Guess $\Phi$ at the endpoints of the edges in $C$
- Find a minimum edge cut between $\{O\}$ and $\{\bullet\}$ with the Edmonds-Karp MaxFlow algorithm


## Discovering a smaller edge bipartization set



Given: $G=(V, E)$ and an edge bipartization $C \subseteq E$ without redundant edges (i)

- Guess $\Phi$ at the endpoints of the edges in $C$
- Find a minimum edge cut between $\{O\}$ and $\{\bullet\}$ with the Edmonds-Karp MaxFlow algorithm
- Any such cut is a solution!


## Run Time for Edge Bipartization

- Compress $m$ times
- Try $2^{k}$ values for $\Phi$
- Find $k$ times an augmenting path in time $O(m)$

Theorem ([Guo et al., WADS'05])
Edge Bipartization can be solved in $O\left(2^{k} \cdot \mathrm{~km}^{2}\right)$ time.

## Adaption to Vertex Bipartization

- Input transformation to ensure solution disjointness no longer works
- Workaround: Try all $2^{k}$ bipartitions of the solution into vertices to keep and vertices to exchange.
- Additional cost: Factor of $2^{k}$


## Comparing Disjoint Vertex Bipartization Sets



## Comparing Disjoint Vertex Bipartization Sets



## Comparing Disjoint Vertex Bipartization Sets



$$
\Phi:=\left\{\begin{array}{l}
\bigcirc \text { for }(\bullet, \bigcirc) \text { or }(\mathrm{O}, \bullet) \\
\bullet \text { for }(\bullet, \bullet) \text { or }(\mathrm{O}, \bigcirc)
\end{array}\right.
$$

$\{\bullet \bullet\}$ is a vertex cut between $\{O\}$ and $\{\bullet\}$

## Discovering a smaller vertex bipartization set

Given: $G=(V, E)$ and a vertex bipartization $C \subseteq V$ without redundant vertices

## Discovering a smaller vertex bipartization set



Given: $G=(V, E)$ and a vertex bipartization $C \subseteq V$ without redundant vertices

- Subdivide edges around vertices in C by two vertices


## Discovering a smaller vertex bipartization set



Given: $G=(V, E)$ and a vertex bipartization $C \subseteq V$ without redundant vertices

- Subdivide edges around vertices in $C$ by two vertices
- Guess $\Phi$ around the vertices in $C$


## Discovering a smaller vertex bipartization set



Given: $G=(V, E)$ and a vertex bipartization $C \subseteq V$ without redundant vertices

- Subdivide edges around vertices in $C$ by two vertices
- Guess $\Phi$ around the vertices in $C$
- Find a minimum vertex cut between $\{O\}$ and $\{\bullet\}$ with the Edmonds-Karp MaxFlow algorithm


## Run Time for Vertex Bipartization

- Compress $n$ times
- Try 3 roles for each vertex from the vertex bipartization set:
- remains in vertex bipartization set
- first possible value of $\Phi$ for the neighbors
- second possible value of $\Phi$ for the neighbors
- Find $k$ times an augmenting path in time $O(m)$

Theorem ([Reed, Smith\&Vetta, Oper. Res. Lett. 2004])
Vertex Bipartization can be solved in $O\left(3^{k} \cdot k m n\right)$ time.

## Experimental Results

Run time in seconds for some Minimum Site Removal instances

|  | $n$ | $m$ | $k$ | ILP | Reed |
| :--- | ---: | ---: | ---: | ---: | ---: |
| A31 | 30 | 51 | 2 | 0.02 | 0.00 |
| J24 | 142 | 387 | 4 | 0.97 | 0.00 |
| A10 | 69 | 191 | 6 | 2.50 | 0.00 |
| J18 | 71 | 296 | 9 | 47.86 | 0.05 |
| A11 | 102 | 307 | 11 | 6248.12 | 0.79 |
| A34 | 133 | 451 | 13 |  | 10.13 |
| A22 | 167 | 641 | 16 |  | 350.00 |
| A50 | 113 | 468 | 18 |  | 3072.82 |
| A45 | 80 | 386 | 20 |  |  |
| A40 | 136 | 620 | 22 |  |  |
| A17 | 151 | 633 | 25 |  |  |
| A28 | 167 | 854 | 27 |  |  |
| A42 | 236 | 1110 | 30 |  |  |
| A41 | 296 | 1620 | 40 |  |  |

## Using Gray Codes to enumerate Valid Partitions

- The flow problems for different valid partitions are "similar" in such a way that we can "recycle" the flow networks for each problem


## Using Gray Codes to enumerate Valid Partitions

- The flow problems for different valid partitions are "similar" in such a way that we can "recycle" the flow networks for each problem
- Using a Gray code, we can enumerate valid partitions such that adjacent partitions differ in only one element


## Using Gray Codes to enumerate Valid Partitions

- The flow problems for different valid partitions are "similar" in such a way that we can "recycle" the flow networks for each problem
- Using a Gray code, we can enumerate valid partitions such that adjacent partitions differ in only one element
- Only $O(\mathrm{~m})$ time, as opposed to $O(\mathrm{~km})$ time for solving a flow problem from scratch


## Using Gray Codes to enumerate Valid Partitions

- The flow problems for different valid partitions are "similar" in such a way that we can "recycle" the flow networks for each problem
- Using a Gray code, we can enumerate valid partitions such that adjacent partitions differ in only one element
- Only $O(m)$ time, as opposed to $O(\mathrm{~km})$ time for solving a flow problem from scratch
- Worst-case speedup by a factor of $k$


## Experimental Results

Run time in seconds for some Minimum Site Removal instances

|  | $n$ | $m$ | $k$ | ILP | Reed | GRAY |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| A31 | 30 | 51 | 2 | 0.02 | 0.00 | 0.00 |
| J24 | 142 | 387 | 4 | 0.97 | 0.00 | 0.00 |
| A10 | 69 | 191 | 6 | 2.50 | 0.00 | 0.00 |
| J18 | 71 | 296 | 9 | 47.86 | 0.05 | 0.01 |
| A11 | 102 | 307 | 11 | 6248.12 | 0.79 | 0.14 |
| A34 | 133 | 451 | 13 |  | 10.13 | 1.04 |
| A22 | 167 | 641 | 16 |  | 350.00 | 64.88 |
| A50 | 113 | 468 | 18 |  | 3072.82 | 270.60 |
| A45 | 80 | 386 | 20 |  |  | 2716.87 |
| A40 | 136 | 620 | 22 |  |  |  |
| A17 | 151 | 633 | 25 |  |  |  |
| A28 | 167 | 854 | 27 |  |  |  |
| A42 | 236 | 1110 | 30 |  |  |  |
| A41 | 296 | 1620 | 40 |  |  |  |

## A Heuristic for Dense Graphs

- If two vertices in the vertex bipartization set are connected by an edge, then the guess of $\Phi$ for them is coupled


## A Heuristic for Dense Graphs

- If two vertices in the vertex bipartization set are connected by an edge, then the guess of $\Phi$ for them is coupled
- No worst-case speedup for general graphs, but very effective in practice


## Experimental Results

Run time in seconds for some Minimum Site Removal instances

|  | $n$ | $m$ | $k$ | ILP | Reed | Gray | Enum2CoL |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| A31 | 30 | 51 | 2 | 0.02 | 0.00 | 0.00 | 0.00 |
| J24 | 142 | 387 | 4 | 0.97 | 0.00 | 0.00 | 0.00 |
| A10 | 69 | 191 | 6 | 2.50 | 0.00 | 0.00 | 0.00 |
| J18 | 71 | 296 | 9 | 47.86 | 0.05 | 0.01 | 0.00 |
| A11 | 102 | 307 | 11 | 6248.12 | 0.79 | 0.14 | 0.00 |
| A34 | 133 | 451 | 13 |  | 10.13 | 1.04 | 0.04 |
| A22 | 167 | 641 | 16 |  | 350.00 | 64.88 | 0.08 |
| A50 | 113 | 468 | 18 |  | 3072.82 | 270.60 | 0.05 |
| A45 | 80 | 386 | 20 |  |  | 2716.87 | 0.14 |
| A40 | 136 | 620 | 22 |  |  |  | 0.80 |
| A17 | 151 | 633 | 25 |  |  |  | 5.68 |
| A28 | 167 | 854 | 27 |  |  |  | 1.02 |
| A42 | 236 | 1110 | 30 |  |  |  | 73.55 |
| A41 | 296 | 1620 | 40 |  |  |  | 236.26 |

[H., WEA'05; data from Wernicke 2003]

Run time for random planted bipartitions $(n=300)$


## Conclusions and Outlook

- Iterative compression is a superior method for solving GRAPH Bipartization in practice
- This makes the practical evaluation of iterative compression for other applications (such as Feedback Vertex Set) appealing

Future work and open questions:

- Reduction rules and kernel
- Combination with heuristics

