
Algorithm Engineering for
Optimal Graph Bipartization

Jiong Guo Jens Gramm Falk Hüffner Rolf Niedermeier
Sebastian Wernicke

Institut für Informatik
Friedrich-Schiller-Universität Jena

Dagstuhl Seminar No 05301: Exact Algorithms and
Fixed-Parameter Tractability

Outline

Introduction and Motivation

Iterative Compression for Graph Bipartization
An O∗(2k)-time algorithm for Edge Bipartization
An O∗(3k)-time algorithm for Vertex Bipartization

Experimental Results for Vertex Bipartization
Runtime Improvements

DNA Sequence Assembly

Cells have two slightly different copies of each chromosome

DNA Sequence Assembly

Assignments of the fragments to copies are initially unknown

DNA Sequence Assembly

Pairwise conflicts indicate that two fragments are from different
copies

DNA Sequence Assembly

Pairwise conflicts indicate that two fragments are from different
copies

DNA Sequence Assembly

Reconstruction of assignment from the bipartite conflict graph

Minimum Fragment Removal

In practise, contaminations occur.

Minimum Fragment Removal

Contamination fragments will conflict with fragments from both
copies.

Minimum Fragment Removal

The task is to recognize contamination fragments.

Formalization as Vertex Bipartization

Vertex Bipartization
Input: An undirected graph G = (V ,E) and a
nonnegative integer k.
Task: Find a subset C ⊆ V of vertices with |C | ≤ k
such that G [V \ C] is bipartite.

Equivalent formulation:

Odd Cycle Cover
Task: Find a subset C ⊆ V of vertices with |C | ≤ k
such that C touches every odd length cycle in G.

Edge Bipartization: Equivalent problem for deleting edges
(parametric dual of MaxCut)

Formalization as Vertex Bipartization

Vertex Bipartization
Input: An undirected graph G = (V ,E) and a
nonnegative integer k.
Task: Find a subset C ⊆ V of vertices with |C | ≤ k
such that G [V \ C] is bipartite.

Equivalent formulation:

Odd Cycle Cover
Task: Find a subset C ⊆ V of vertices with |C | ≤ k
such that C touches every odd length cycle in G.

Edge Bipartization: Equivalent problem for deleting edges
(parametric dual of MaxCut)

Formalization as Vertex Bipartization

Vertex Bipartization
Input: An undirected graph G = (V ,E) and a
nonnegative integer k.
Task: Find a subset C ⊆ V of vertices with |C | ≤ k
such that G [V \ C] is bipartite.

Equivalent formulation:

Odd Cycle Cover
Task: Find a subset C ⊆ V of vertices with |C | ≤ k
such that C touches every odd length cycle in G.

Edge Bipartization: Equivalent problem for deleting edges
(parametric dual of MaxCut)

Vertex Bipartization and Edge Bipartization

I Numerous applications in computational biology, VLSI,
register allocation, . . .

I NP-complete
[Lewis&Yannakakis, J. Comput. Syst. Sci. 1980]

I MaxSNP-hard
[Papadimitriou&Yannakakis, J. Comput. Syst. Sci. 1991]

I Best known approximation is by a factor of log |V |
[Garg, Vazirani&Yannakakis, SIAM J. Comput. 1996]

I Fixed-parameter tractable with respect to k
[Reed, Smith&Vetta, Oper. Res. Lett. 2004]

Vertex Bipartization and Edge Bipartization

I Numerous applications in computational biology, VLSI,
register allocation, . . .

I NP-complete
[Lewis&Yannakakis, J. Comput. Syst. Sci. 1980]

I MaxSNP-hard
[Papadimitriou&Yannakakis, J. Comput. Syst. Sci. 1991]

I Best known approximation is by a factor of log |V |
[Garg, Vazirani&Yannakakis, SIAM J. Comput. 1996]

I Fixed-parameter tractable with respect to k
[Reed, Smith&Vetta, Oper. Res. Lett. 2004]

Vertex Bipartization and Edge Bipartization

I Numerous applications in computational biology, VLSI,
register allocation, . . .

I NP-complete
[Lewis&Yannakakis, J. Comput. Syst. Sci. 1980]

I MaxSNP-hard
[Papadimitriou&Yannakakis, J. Comput. Syst. Sci. 1991]

I Best known approximation is by a factor of log |V |
[Garg, Vazirani&Yannakakis, SIAM J. Comput. 1996]

I Fixed-parameter tractable with respect to k
[Reed, Smith&Vetta, Oper. Res. Lett. 2004]

Vertex Bipartization and Edge Bipartization

I Numerous applications in computational biology, VLSI,
register allocation, . . .

I NP-complete
[Lewis&Yannakakis, J. Comput. Syst. Sci. 1980]

I MaxSNP-hard
[Papadimitriou&Yannakakis, J. Comput. Syst. Sci. 1991]

I Best known approximation is by a factor of log |V |
[Garg, Vazirani&Yannakakis, SIAM J. Comput. 1996]

I Fixed-parameter tractable with respect to k
[Reed, Smith&Vetta, Oper. Res. Lett. 2004]

Vertex Bipartization and Edge Bipartization

I Numerous applications in computational biology, VLSI,
register allocation, . . .

I NP-complete
[Lewis&Yannakakis, J. Comput. Syst. Sci. 1980]

I MaxSNP-hard
[Papadimitriou&Yannakakis, J. Comput. Syst. Sci. 1991]

I Best known approximation is by a factor of log |V |
[Garg, Vazirani&Yannakakis, SIAM J. Comput. 1996]

I Fixed-parameter tractable with respect to k
[Reed, Smith&Vetta, Oper. Res. Lett. 2004]

Iterative Compression

Idea: Use a compression routine iteratively.

Compression routine: Given a size-(k +1) solution, either computes
a size-k solution or proves that there is no size-k solution.

Algorithm:
Start with empty graph G ′ and empty edge bipartization set C
For each edge e in G :

Add e to both G ′ and C
Compress C using the compression routine

Iterative Compression

Idea: Use a compression routine iteratively.

Compression routine: Given a size-(k +1) solution, either computes
a size-k solution or proves that there is no size-k solution.

Algorithm:
Start with empty graph G ′ and empty edge bipartization set C
For each edge e in G :

Add e to both G ′ and C
Compress C using the compression routine

Iterative Compression for Edge Bipartization

Preprocessing for the compression routine: Transform the input
such that one can assume w.l.o.g. that the smaller solution is
disjoint from the known one.

Comparing Disjoint Edge Bipartization Sets

Φ :=

{
for (,) or (,)

for (,) or (,)

{ } is an edge cut between { } and { }

Comparing Disjoint Edge Bipartization Sets

Φ :=

{
for (,) or (,)

for (,) or (,)

{ } is an edge cut between { } and { }

Comparing Disjoint Edge Bipartization Sets

Φ :=

{
for (,) or (,)

for (,) or (,)

{ } is an edge cut between { } and { }

Discovering a smaller edge bipartization set

Given: G = (V ,E) and an edge
bipartization C ⊆ E without redundant
edges ()

I Guess Φ at the endpoints of the edges
in C

I Find a minimum edge cut between { }
and { } with the Edmonds–Karp
MaxFlow algorithm

I Any such cut is a solution!

Discovering a smaller edge bipartization set

Given: G = (V ,E) and an edge
bipartization C ⊆ E without redundant
edges ()

I Guess Φ at the endpoints of the edges
in C

I Find a minimum edge cut between { }
and { } with the Edmonds–Karp
MaxFlow algorithm

I Any such cut is a solution!

Discovering a smaller edge bipartization set

Given: G = (V ,E) and an edge
bipartization C ⊆ E without redundant
edges ()

I Guess Φ at the endpoints of the edges
in C

I Find a minimum edge cut between { }
and { } with the Edmonds–Karp
MaxFlow algorithm

I Any such cut is a solution!

Discovering a smaller edge bipartization set

Given: G = (V ,E) and an edge
bipartization C ⊆ E without redundant
edges ()

I Guess Φ at the endpoints of the edges
in C

I Find a minimum edge cut between { }
and { } with the Edmonds–Karp
MaxFlow algorithm

I Any such cut is a solution!

Discovering a smaller edge bipartization set

Given: G = (V ,E) and an edge
bipartization C ⊆ E without redundant
edges ()

I Guess Φ at the endpoints of the edges
in C

I Find a minimum edge cut between { }
and { } with the Edmonds–Karp
MaxFlow algorithm

I Any such cut is a solution!

Run Time for Edge Bipartization

I Compress m times

I Try 2k values for Φ

I Find k times an augmenting path in time O(m)

Theorem ([Guo et al., WADS’05])

Edge Bipartization can be solved in O(2k · km2) time.

Adaption to Vertex Bipartization

I Input transformation to ensure solution disjointness no longer
works

I Workaround: Try all 2k bipartitions of the solution into
vertices to keep and vertices to exchange.

I Additional cost: Factor of 2k

Comparing Disjoint Vertex Bipartization Sets

Φ :=

{
for (,) or (,)

for (,) or (,)

{ } is a vertex cut between { } and { }

Comparing Disjoint Vertex Bipartization Sets

Φ :=

{
for (,) or (,)

for (,) or (,)

{ } is a vertex cut between { } and { }

Comparing Disjoint Vertex Bipartization Sets

Φ :=

{
for (,) or (,)

for (,) or (,)

{ } is a vertex cut between { } and { }

Discovering a smaller vertex bipartization set

Given: G = (V ,E) and a vertex
bipartization C ⊆ V without redundant
vertices

I Subdivide edges around vertices in C
by two vertices

I Guess Φ around the vertices in C

I Find a minimum vertex cut between
{ } and { } with the Edmonds–Karp
MaxFlow algorithm

Discovering a smaller vertex bipartization set

Given: G = (V ,E) and a vertex
bipartization C ⊆ V without redundant
vertices

I Subdivide edges around vertices in C
by two vertices

I Guess Φ around the vertices in C

I Find a minimum vertex cut between
{ } and { } with the Edmonds–Karp
MaxFlow algorithm

Discovering a smaller vertex bipartization set

Given: G = (V ,E) and a vertex
bipartization C ⊆ V without redundant
vertices

I Subdivide edges around vertices in C
by two vertices

I Guess Φ around the vertices in C

I Find a minimum vertex cut between
{ } and { } with the Edmonds–Karp
MaxFlow algorithm

Discovering a smaller vertex bipartization set

Given: G = (V ,E) and a vertex
bipartization C ⊆ V without redundant
vertices

I Subdivide edges around vertices in C
by two vertices

I Guess Φ around the vertices in C

I Find a minimum vertex cut between
{ } and { } with the Edmonds–Karp
MaxFlow algorithm

Run Time for Vertex Bipartization

I Compress n times
I Try 3 roles for each vertex from the vertex bipartization set:

I remains in vertex bipartization set
I first possible value of Φ for the neighbors
I second possible value of Φ for the neighbors

I Find k times an augmenting path in time O(m)

Theorem ([Reed, Smith&Vetta, Oper. Res. Lett. 2004])

Vertex Bipartization can be solved in O(3k · kmn) time.

Experimental Results

Run time in seconds for some Minimum Site Removal instances

n m k ILP Reed

A31 30 51 2 0.02 0.00
J24 142 387 4 0.97 0.00
A10 69 191 6 2.50 0.00
J18 71 296 9 47.86 0.05
A11 102 307 11 6248.12 0.79
A34 133 451 13 10.13
A22 167 641 16 350.00
A50 113 468 18 3072.82
A45 80 386 20
A40 136 620 22
A17 151 633 25
A28 167 854 27
A42 236 1110 30
A41 296 1620 40

[H., WEA’05; data from Wernicke 2003]

Using Gray Codes to enumerate Valid Partitions

I The flow problems for different valid partitions are “similar” in
such a way that we can “recycle” the flow networks for each
problem

I Using a Gray code, we can enumerate valid partitions such
that adjacent partitions differ in only one element

I Only O(m) time, as opposed to O(km) time for solving a flow
problem from scratch

I Worst-case speedup by a factor of k

Using Gray Codes to enumerate Valid Partitions

I The flow problems for different valid partitions are “similar” in
such a way that we can “recycle” the flow networks for each
problem

I Using a Gray code, we can enumerate valid partitions such
that adjacent partitions differ in only one element

I Only O(m) time, as opposed to O(km) time for solving a flow
problem from scratch

I Worst-case speedup by a factor of k

Using Gray Codes to enumerate Valid Partitions

I The flow problems for different valid partitions are “similar” in
such a way that we can “recycle” the flow networks for each
problem

I Using a Gray code, we can enumerate valid partitions such
that adjacent partitions differ in only one element

I Only O(m) time, as opposed to O(km) time for solving a flow
problem from scratch

I Worst-case speedup by a factor of k

Using Gray Codes to enumerate Valid Partitions

I The flow problems for different valid partitions are “similar” in
such a way that we can “recycle” the flow networks for each
problem

I Using a Gray code, we can enumerate valid partitions such
that adjacent partitions differ in only one element

I Only O(m) time, as opposed to O(km) time for solving a flow
problem from scratch

I Worst-case speedup by a factor of k

Experimental Results

Run time in seconds for some Minimum Site Removal instances

n m k ILP Reed Gray

A31 30 51 2 0.02 0.00 0.00
J24 142 387 4 0.97 0.00 0.00
A10 69 191 6 2.50 0.00 0.00
J18 71 296 9 47.86 0.05 0.01
A11 102 307 11 6248.12 0.79 0.14
A34 133 451 13 10.13 1.04
A22 167 641 16 350.00 64.88
A50 113 468 18 3072.82 270.60
A45 80 386 20 2716.87
A40 136 620 22
A17 151 633 25
A28 167 854 27
A42 236 1110 30
A41 296 1620 40

[H., WEA’05; data from Wernicke 2003]

A Heuristic for Dense Graphs

I If two vertices in the vertex bipartization set are connected by
an edge, then the guess of Φ for them is coupled

I No worst-case speedup for general graphs, but very effective
in practice

A Heuristic for Dense Graphs

I If two vertices in the vertex bipartization set are connected by
an edge, then the guess of Φ for them is coupled

I No worst-case speedup for general graphs, but very effective
in practice

Experimental Results

Run time in seconds for some Minimum Site Removal instances

n m k ILP Reed Gray Enum2Col

A31 30 51 2 0.02 0.00 0.00 0.00
J24 142 387 4 0.97 0.00 0.00 0.00
A10 69 191 6 2.50 0.00 0.00 0.00
J18 71 296 9 47.86 0.05 0.01 0.00
A11 102 307 11 6248.12 0.79 0.14 0.00
A34 133 451 13 10.13 1.04 0.04
A22 167 641 16 350.00 64.88 0.08
A50 113 468 18 3072.82 270.60 0.05
A45 80 386 20 2716.87 0.14
A40 136 620 22 0.80
A17 151 633 25 5.68
A28 167 854 27 1.02
A42 236 1110 30 73.55
A41 296 1620 40 236.26

[H., WEA’05; data from Wernicke 2003]

Run time for random planted bipartitions (n = 300)

6 8 10 12 14 16 18 20 22 24
Size of odd cycle cover

10-2

10-1

1

101

102

103

ru
n

tim
e

in
 s

ec
on

ds

average degree 3

average degree 16

average degree 64

Conclusions and Outlook

I Iterative compression is a superior method for solving Graph
Bipartization in practice

I This makes the practical evaluation of iterative compression
for other applications (such as Feedback Vertex Set)
appealing

Future work and open questions:

I Reduction rules and kernel

I Combination with heuristics

	Introduction and Motivation
	Iterative Compression for Graph Bipartization
	An O*(2k)-time algorithm for Edge Bipartization
	An O*(3k)-time algorithm for Vertex Bipartization

	Experimental Results for Vertex Bipartization
	Runtime Improvements

