
What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Algorithm Design: Simplicity

Falk Hüffner

Friedrich-Schiller-Universität Jena

GI-Dagstuhl Research Seminar 06362: Algorithm Engineering
September 2006

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 1/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Outline

1 What is simplicity?

2 Advantages of simplicity for implementation

3 How to achieve simplicity?
Modularization
General-purpose modelers
Trade off guaranteed performance
Trade off guaranteed correctness

4 Effects on analysis
Example: Exponential-time algorithms

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 2/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Outline

1 What is simplicity?

2 Advantages of simplicity for implementation

3 How to achieve simplicity?
Modularization
General-purpose modelers
Trade off guaranteed performance
Trade off guaranteed correctness

4 Effects on analysis
Example: Exponential-time algorithms

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 3/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Definition of Simplicity

Definition attempt

An algorithm is simple if it is concise to write down and easy to
grasp.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 4/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Red-black trees—a complicated data structure?

Red-black trees are balanced binary search trees used to implement
associative arrays.

To describe the “insert” function of red-black-trees, Cormen et al.
[Introduction to Algorithms, 2001] use 14 pages and about 57 lines of
pseudocode. They differentiate nine cases and five different actions
for balancing.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 5/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Red-black trees—a complicated data structure?

A Haskell implementation [Okasaki, J. Functional Programming ’99]:

data Color = R | B
data Tree elt = E | T Color (Tree elt) elt (Tree elt)

balance B (T R (T R a x b) y c) z d
|| B (T R a x (T R b y c)) z d
|| B a x (T R (T R b y c) z d)
|| B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)

balance color a x b = T color a x b

insert x s = makeBlack (ins s)
where ins E = T R E x E

ins (T color a y b) | x < y = balance color (ins a) y b
| x == y = T color a y b
| x > y = balance color a y (ins b)

makeBlack (T _ a y b) = T B a y b

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 7/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Where did the complexity go?

Algebraic data types

Pattern matching

No “optimizations”

. . . but it’s the same algorithm!

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 8/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Definition of Simplicity?

“Simplicity” of an algorithm is affected by “cultural” factors:

Means of presentation (notation, assumptions, . . .)

Previous knowledge of the reader.

We will do with the intuitive concept of simplicity.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 9/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Outline

1 What is simplicity?

2 Advantages of simplicity for implementation

3 How to achieve simplicity?
Modularization
General-purpose modelers
Trade off guaranteed performance
Trade off guaranteed correctness

4 Effects on analysis
Example: Exponential-time algorithms

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 10/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Advantages of simplicity for implementation

quicker to implement

fewer bugs

reduced effort for testing

maintainability: easier to understand and debug

flexibility: adaption to changing specifications

employment in resource constrained environments

Example

The Advanced Encryption Standard (AES) process, which aimed
to find a new standard block cipher, required “algorithm
simplicity” as one of the three major algorithm characteristics.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 11/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Advantages of simplicity for implementation

quicker to implement

fewer bugs

reduced effort for testing

maintainability: easier to understand and debug

flexibility: adaption to changing specifications

employment in resource constrained environments

Example

The Advanced Encryption Standard (AES) process, which aimed
to find a new standard block cipher, required “algorithm
simplicity” as one of the three major algorithm characteristics.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 11/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Infeasibly complicated algorithms

Lack of simplicity can make implementation infeasible.

Example

Algorithm for four-coloring planar graphs
[Robertson, Sanders, Seymour&Thomas, STOC ’96]

finds one of 633 “configurations” (subgraphs),

then applies one of 32 “discharging rules” to eliminate it.

Only algorithm for four-coloring planar graphs, but never
implemented.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 12/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Really infeasible?

Sometimes, algorithms initially dismissed as too complicated
sometimes still find applications.

Example

Fibonacci heaps: Priority queue data structure

“[. . .] predominantly of theoretical interest.”
[Cormen et al., Introduction to Algorithms, 2001]

“[. . .] sufficiently complicated that you shouldn’t mess with
them unless you really know what you are doing.”
[Skiena, Algorithm Design Manual, 1998]

implemented in the widely-used GNU compiler collection (gcc)

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 13/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Outline

1 What is simplicity?

2 Advantages of simplicity for implementation

3 How to achieve simplicity?
Modularization
General-purpose modelers
Trade off guaranteed performance
Trade off guaranteed correctness

4 Effects on analysis
Example: Exponential-time algorithms

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 14/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Modularization

Idea

Impose a hierarchical structure: Decompose the problem into
several parts with a narrow intersection, which can then
independently designed and understood, and be further subdivided.

Well-known from software engineering.

Example

Task: Based on a packed-based network protocol where packets
might get lost or arrive out-of order (IP), design a protocol for
serving web pages (http).
Idea: First design an intermediate protocol that provides reliable
streaming connections (TCP).

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 15/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Modularization

Example

Compilers are usually divided into a lexing, a parsing, and a
translation phase.
The translation phase is usually broken down further; for example
gcc chains more than 100 separate optimization passes.

Example

Computational geometry tasks: Let S be a set of n {points, line
segments, . . . } in the plane.
Idea: First sort by {x-coordinate, slope, . . . }.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 16/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Modularization

Example

Compilers are usually divided into a lexing, a parsing, and a
translation phase.
The translation phase is usually broken down further; for example
gcc chains more than 100 separate optimization passes.

Example

Computational geometry tasks: Let S be a set of n {points, line
segments, . . . } in the plane.
Idea: First sort by {x-coordinate, slope, . . . }.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 16/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Use standard algorithm design schemes

divide&conquer

dynamic programming

greedy

branch&bound

sweepline

. . .

Advantages:

simpler to grasp

exploit existing experience with analysis

exploit existing experience with implementation

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 17/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Use standard algorithm design schemes

divide&conquer

dynamic programming

greedy

branch&bound

sweepline

. . .

Advantages:

simpler to grasp

exploit existing experience with analysis

exploit existing experience with implementation

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 17/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

General-purpose modelers

Some general models have been successfully used to solve a wide
range of problems:

linear programs (LPs)

integer linear programs (ILPs)

constraint satisfaction problems (CSPs)

boolean satisfiability problems (SAT)

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 18/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Linear Programming

LP solvers optimize a linear function of a real vector under linear
constraints

x2

x1

feasible region

constraint

objective function

optimal solution

ILPs add the possibility of requiring coefficients to be integral

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 19/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Linear Programming

LP solvers optimize a linear function of a real vector under linear
constraints

x2

x1

feasible region

constraint

optimal solution

objective function

ILPs add the possibility of requiring coefficients to be integral

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 19/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Graph Bipartization

Graph Bipartization: Find a minimum size set of vertices in a
graph whose removal results in the graph being bipartite.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 20/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Graph Bipartization

Graph Bipartization: Find a minimum size set of vertices in a
graph whose removal results in the graph being bipartite.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 20/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

ILP for Graph Bipartization

c1, . . . , cn : binary variables (cover)

s1, . . . , sn : binary variables (color)

minimize
n∑

i=1

ci

s. t. ∀{v ,w} ∈ E : (sv 6= sw) ∨ cv ∨ cw

which can be expressed as an ILP constraint as

s. t. ∀{v ,w} ∈ E : sv + sw + (cv + cw) ≥ 1

∀{v ,w} ∈ E : sv + sw − (cv + cw) ≤ 1

When solved by GNU GLPK, faster than a 2600 lines of code
problem-specific branch&bound-algorithm

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 21/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

ILP for Graph Bipartization

c1, . . . , cn : binary variables (cover)

s1, . . . , sn : binary variables (color)

minimize
n∑

i=1

ci

s. t. ∀{v ,w} ∈ E : (sv 6= sw) ∨ cv ∨ cw

which can be expressed as an ILP constraint as

s. t. ∀{v ,w} ∈ E : sv + sw + (cv + cw) ≥ 1

∀{v ,w} ∈ E : sv + sw − (cv + cw) ≤ 1

When solved by GNU GLPK, faster than a 2600 lines of code
problem-specific branch&bound-algorithm

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 21/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

ILP for Graph Bipartization

c1, . . . , cn : binary variables (cover)

s1, . . . , sn : binary variables (color)

minimize
n∑

i=1

ci

s. t. ∀{v ,w} ∈ E : (sv 6= sw) ∨ cv ∨ cw

which can be expressed as an ILP constraint as

s. t. ∀{v ,w} ∈ E : sv + sw + (cv + cw) ≥ 1

∀{v ,w} ∈ E : sv + sw − (cv + cw) ≤ 1

When solved by GNU GLPK, faster than a 2600 lines of code
problem-specific branch&bound-algorithm

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 21/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

ILP for Graph Bipartization

c1, . . . , cn : binary variables (cover)

s1, . . . , sn : binary variables (color)

minimize
n∑

i=1

ci

s. t. ∀{v ,w} ∈ E : (sv 6= sw) ∨ cv ∨ cw

which can be expressed as an ILP constraint as

s. t. ∀{v ,w} ∈ E : sv + sw + (cv + cw) ≥ 1

∀{v ,w} ∈ E : sv + sw − (cv + cw) ≤ 1

When solved by GNU GLPK, faster than a 2600 lines of code
problem-specific branch&bound-algorithm

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 21/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

ILP for Graph Bipartization

c1, . . . , cn : binary variables (cover)

s1, . . . , sn : binary variables (color)

minimize
n∑

i=1

ci

s. t. ∀{v ,w} ∈ E : (sv 6= sw) ∨ cv ∨ cw

which can be expressed as an ILP constraint as

s. t. ∀{v ,w} ∈ E : sv + sw + (cv + cw) ≥ 1

∀{v ,w} ∈ E : sv + sw − (cv + cw) ≤ 1

When solved by GNU GLPK, faster than a 2600 lines of code
problem-specific branch&bound-algorithm

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 21/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Randomization

“Simplicity [. . .] is the first and foremost reason for using
randomized algorithms.” [Gupta, Lecture Notes, 2004]

By using nondeterminism and

accepting a small chance of a high runtime (Las Vegas
algorithms), or

accepting a small chance of a nonoptimal output (Monte
Carlo algorithms),

one can often obtain algorithms that are much simpler than
deterministic algorithms.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 22/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Quicksort

Quicksort works by selecting an element as pivot, dividing the
elements into those smaller than the pivot and those larger
than the pivot, and then recursively sorting these subsets.

Quicksort performs very well, except when the choice of the
pivot repeatedly divides the subsequence into parts of very
unequal size.

Even elaborate pivot choice schemes like “median-of-three”
cannot eliminate this problem.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 23/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Randomized quicksort

Choose a random pivot!

expected runtime Θ(n log n)

Disadvantage: with a small probability, the algorithm takes
much longer than expected.

Definition

An algorithm employing randomness that always produces a
correct result, but carries a small probability of using more
resources than expected, is called a Las Vegas algorithm.

Las Vegas algorithms can often be used to avoid excessive resource
usage on corner case inputs, while retaining simplicity.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 24/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Randomized quicksort

Choose a random pivot!

expected runtime Θ(n log n)

Disadvantage: with a small probability, the algorithm takes
much longer than expected.

Definition

An algorithm employing randomness that always produces a
correct result, but carries a small probability of using more
resources than expected, is called a Las Vegas algorithm.

Las Vegas algorithms can often be used to avoid excessive resource
usage on corner case inputs, while retaining simplicity.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 24/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Randomized quicksort

Choose a random pivot!

expected runtime Θ(n log n)

Disadvantage: with a small probability, the algorithm takes
much longer than expected.

Definition

An algorithm employing randomness that always produces a
correct result, but carries a small probability of using more
resources than expected, is called a Las Vegas algorithm.

Las Vegas algorithms can often be used to avoid excessive resource
usage on corner case inputs, while retaining simplicity.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 24/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Min-Cut

Min-Cut: Find a minimum size set of edges in a graph whose
removal results in the graph being broken into two or more
components.
Randomized approach:

Pick a random edge and merge its two endpoints.

Remove all self-loops (but not multiple edges between two
vertices).

Repeat until only two vertices remain.

The edges between these vertices then form a candidate
min-cut.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 25/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Min-Cut

Min-Cut: Find a minimum size set of edges in a graph whose
removal results in the graph being broken into two or more
components.
Randomized approach:

Pick a random edge and merge its two endpoints.

Remove all self-loops (but not multiple edges between two
vertices).

Repeat until only two vertices remain.

The edges between these vertices then form a candidate
min-cut.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 25/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Randomized algorithm for Min-Cut

The error probability can be made arbitrarily small by
repeating.

The algorithm is much simpler than deterministic algorithms.

A variant is also significantly faster.

Definition

An algorithm employing randomness that is always fast, but carries
a small probability of producing a nonoptimal solution, is called a
Monte Carlo algorithm.

Monte Carlo algorithms can often be significantly simpler and
faster than deterministic algorithms.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 26/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Randomized algorithm for Min-Cut

The error probability can be made arbitrarily small by
repeating.

The algorithm is much simpler than deterministic algorithms.

A variant is also significantly faster.

Definition

An algorithm employing randomness that is always fast, but carries
a small probability of producing a nonoptimal solution, is called a
Monte Carlo algorithm.

Monte Carlo algorithms can often be significantly simpler and
faster than deterministic algorithms.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 26/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Randomized algorithm for Min-Cut

The error probability can be made arbitrarily small by
repeating.

The algorithm is much simpler than deterministic algorithms.

A variant is also significantly faster.

Definition

An algorithm employing randomness that is always fast, but carries
a small probability of producing a nonoptimal solution, is called a
Monte Carlo algorithm.

Monte Carlo algorithms can often be significantly simpler and
faster than deterministic algorithms.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 26/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Outline

1 What is simplicity?

2 Advantages of simplicity for implementation

3 How to achieve simplicity?
Modularization
General-purpose modelers
Trade off guaranteed performance
Trade off guaranteed correctness

4 Effects on analysis
Example: Exponential-time algorithms

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 27/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Simple algorithm – simple analysis?

Intuitively, a simpler algorithm should be simpler to analyze for
performance measures such as worst-case runtime, memory use, or
solution quality.

Example

Vertex Cover: Given a graph, find a subset of its vertices such that
every edge has at least one endpoint in the subset.

Simple greedy strategy: repeatedly choose some edge, take both
endpoints into the cover, and then deletes them from the graph.
Clearly, the solution is at most twice as large as an optimal one.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 28/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Simple algorithm – simple analysis?

Intuitively, a simpler algorithm should be simpler to analyze for
performance measures such as worst-case runtime, memory use, or
solution quality.

Example

Vertex Cover: Given a graph, find a subset of its vertices such that
every edge has at least one endpoint in the subset.

Simple greedy strategy: repeatedly choose some edge, take both
endpoints into the cover, and then deletes them from the graph.
Clearly, the solution is at most twice as large as an optimal one.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 28/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Simple algorithm – simple analysis?

Intuitively, a simpler algorithm should be simpler to analyze for
performance measures such as worst-case runtime, memory use, or
solution quality.

Example

Vertex Cover: Given a graph, find a subset of its vertices such that
every edge has at least one endpoint in the subset.

Simple greedy strategy: repeatedly choose some edge, take both
endpoints into the cover, and then deletes them from the graph.
Clearly, the solution is at most twice as large as an optimal one.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 28/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Shortest Common Superstring

Example

Shortest Common Superstring: given a set S = {S1, . . . ,Sn} of
strings, find the shortest string that contains each element of S as
a contiguous substring.

Simple greedy strategy: repeatedly merges the two strings with the
largest overlap, until only one string remains. (The overlap of two
strings A and B is the longest string that is both a suffix of A and
a prefix of B).
TCAGAGGC GGCAGAAG AAGTTCAG AAGTTGGG
AAGTTCAGAGGC GGCAGAAG AAGTTGGG

AAGTTCAGAGGC GGCAGAAG AAGTTGGG
GGCAGAAGTTCAGAGGC AAGTTGGG

GGCAGAAGTTCAGAGGC AAGTTGGG
AAGTTGGGCAGAAGTTCAGAGGC

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 29/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Shortest Common Superstring

Example

Shortest Common Superstring: given a set S = {S1, . . . ,Sn} of
strings, find the shortest string that contains each element of S as
a contiguous substring.

Simple greedy strategy: repeatedly merges the two strings with the
largest overlap, until only one string remains. (The overlap of two
strings A and B is the longest string that is both a suffix of A and
a prefix of B).
TCAGAGGC GGCAGAAG AAGTTCAG AAGTTGGG
AAGTTCAGAGGC GGCAGAAG AAGTTGGG

AAGTTCAGAGGC GGCAGAAG AAGTTGGG
GGCAGAAGTTCAGAGGC AAGTTGGG

GGCAGAAGTTCAGAGGC AAGTTGGG
AAGTTGGGCAGAAGTTCAGAGGC

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 29/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Shortest Common Superstring

Example

Shortest Common Superstring: given a set S = {S1, . . . ,Sn} of
strings, find the shortest string that contains each element of S as
a contiguous substring.

Simple greedy strategy: repeatedly merges the two strings with the
largest overlap, until only one string remains. (The overlap of two
strings A and B is the longest string that is both a suffix of A and
a prefix of B).
TCAGAGGC GGCAGAAG AAGTTCAG AAGTTGGG
AAGTTCAGAGGC GGCAGAAG AAGTTGGG

AAGTTCAGAGGC GGCAGAAG AAGTTGGG
GGCAGAAGTTCAGAGGC AAGTTGGG

GGCAGAAGTTCAGAGGC AAGTTGGG
AAGTTGGGCAGAAGTTCAGAGGC

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 29/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Shortest Common Superstring

Example

Shortest Common Superstring: given a set S = {S1, . . . ,Sn} of
strings, find the shortest string that contains each element of S as
a contiguous substring.

Simple greedy strategy: repeatedly merges the two strings with the
largest overlap, until only one string remains. (The overlap of two
strings A and B is the longest string that is both a suffix of A and
a prefix of B).
TCAGAGGC GGCAGAAG AAGTTCAG AAGTTGGG
AAGTTCAGAGGC GGCAGAAG AAGTTGGG

AAGTTCAGAGGC GGCAGAAG AAGTTGGG
GGCAGAAGTTCAGAGGC AAGTTGGG

GGCAGAAGTTCAGAGGC AAGTTGGG
AAGTTGGGCAGAAGTTCAGAGGC

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 29/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Greedy for Shortest Common Superstring

How good is the greedy algorithm?

No example is known where solution is more than twice as
long as an optimal one.

Conjecture: factor 2 is the worst case

Only an upper bound of 3.5 has been proven
[Kaplan&Shafrir, IPL ’05]

The currently “best” algorithm provides factor 2.5
[Sweedyk, SIAM J. Comput. ’99]

Suspicion: Are we only improving analyzability instead of
performance, at the cost of simplicity?

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 30/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Greedy for Shortest Common Superstring

How good is the greedy algorithm?

No example is known where solution is more than twice as
long as an optimal one.

Conjecture: factor 2 is the worst case

Only an upper bound of 3.5 has been proven
[Kaplan&Shafrir, IPL ’05]

The currently “best” algorithm provides factor 2.5
[Sweedyk, SIAM J. Comput. ’99]

Suspicion: Are we only improving analyzability instead of
performance, at the cost of simplicity?

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 30/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Exponential-time algorithms

In one line of research, increasingly complicated
exponential-time algorithm for NP-hard problems were
developed

Progress based on case distinctions

Experiments often did not show speedups

A new method of analyzing the recurrences involved by
Eppstein [SODA ’04] allowed to show an algorithm for
Dominating Set actually runs in O(20.598n) instead
of O(20.850n) [Fomin et al. ICALP ’05].

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 31/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Simplicity and Analysis

How to avoid introducing unneccessary complexity that only
improves analyzability?

Experiments

Proving lower bounds

Improving the algorithm analysis tools

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 32/33

What is simplicity? Advantages of simplicity for implementation How to achieve simplicity? Effects on analysis

Summary

Simplicity is a valuable property of an algorithm.

Techniques to achieve simplicity:

Modularization
Modeling tools
Randomization

One should be wary of sacrificing simplicity for what might
only be analyzability.

Falk Hüffner (Uni Jena) Algorithm Design: Simplicity GI-Dagstuhl 06362 33/33

	What is simplicity?
	

	Advantages of simplicity for implementation
	

	How to achieve simplicity?
	Modularization
	General-purpose modelers
	Trade off guaranteed performance
	Trade off guaranteed correctness

	Effects on analysis
	Example: Exponential-time algorithms

