Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Experiments with Parameterized Approaches to Hard Graph Problems

Falk Hüffner

joint work with

Nadja Betzler

Rolf Niedermeier Sebastian Wernicke Thomas Zichner

Friedrich-Schiller-Universität Jena Institut für Informatik

Dagstuhl Seminar N° 07281 Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs

(4 回 ト 4 ヨ ト 4 ヨ ト

Minimum-Weight Path	Minimum-Weight Path experiments	Balanced Subgraph	Balanced Subgraph experiments
Outline			

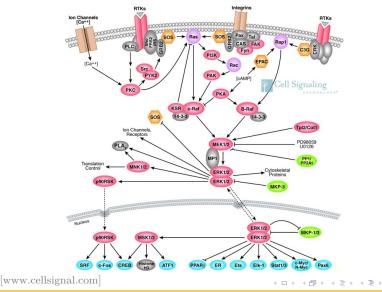
- Application: protein interaction networks
- Color-coding
- Speedups

2 Minimum-Weight Path experiments

3 Balanced Subgraph

- Applications
- Data reduction
- Iterative compression

4 Balanced Subgraph experiments


A E F A E F

Minimum-Weight Path experiments

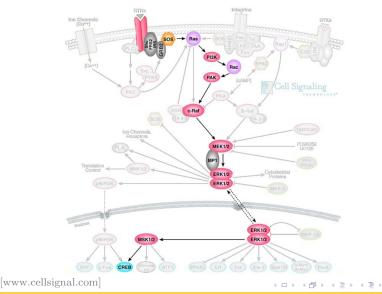
Balanced Subgraph

Balanced Subgraph experiments 000

Signaling pathways

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems


э

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Signaling pathways

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems

3

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Signaling pathways

MINIMUM-WEIGHT PATH

Input: Graph G = (V, E), weights $w : E \to \mathbb{R}^+$, integer k > 0. Task: Find a non-overlapping path v_1, \ldots, v_k of length k in G that minimizes $w(v_1, v_2) + \cdots + w(v_{k-1}, v_k)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Example: yeast network

4 400 proteins, 14 300 interactions, looking for paths of length 5-15

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems

∃ ► < ∃</p>

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Minimum-Weight Path

Theorem

MINIMUM-WEIGHT PATH is NP-hard [Garey & Johnson 1979].

Idea

Exploit the fact that the paths sought for are rather short (\approx 5–15): parameter k.

→ Ξ →

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Color-coding

Color-coding [Alon, Yuster & Zwick J. ACM 1995]

- randomly color each vertex of the graph with one of k colors
- hope that all vertices in the subgraph searched for obtain different colors (colorful)
- solve the MINIMUM-WEIGHT PATH under this assumption (which is much quicker)
- repeat until it is reasonably certain that the path was colorful at least once

Result: FPT algorithm

A (10) < A (10) </p>

Dynamic programming for Minimum-Weight Colorful Path

Idea

Table entry W[v, C] stores the minimum-weight path that ends in v and uses exactly the colors in C.

- Each table entry can be calculated in O(n) time
- $n \cdot 2^k$ table entries

→ Running time per trial: $O(2^k \cdot n^2)$ To obtain error probability ε , one needs $O(-\ln \varepsilon \cdot e^k)$ trials

Theorem ([ALON et al. JACM 1995])

MINIMUM-WEIGHT PATH can be solved in $O(-\ln \varepsilon \cdot 5.44^k |G|)$ time.

イロト 不得下 イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Implementations of color-coding

- Find minimum-weight paths of length 10 in the yeast protein interaction networks within 3 hours (n = 4400, k = 10) [SCOTT et al., RECOMB 2005]
- Pathway queries

[Shlomi et al., BMC Bioinformatics 2006]

Protein docking

[MAYROSE et al., Nucleic Acids Research 2007]

Balanced paths

[Cappanera & Scutellà, INOC 2007]

• Automated text headline generation

[Deshpande et al., NAACL HLT 2007]

イロト 不得下 イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Increasing the number of colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) \rightarrow O(2^{k+x}|G|)$$

イロト イポト イヨト イヨト

3

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Increasing the number of colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) \rightarrow O(2^{k+x}|G|)$$

Probability P_c for colorful path (k = 8, c = 0.001):

x	0	1	2	3	4	5
P _c	0.0024	0.0084	0.0181	0.0310	0.0464	0.0636
trials	2871	816	378	220	146	106

イロト イポト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Increasing the number of colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) \rightarrow O(2^{k+x}|G|)$$

Probability P_c for colorful path (k = 8, $\varepsilon = 0.001$):

x	0	1	2	3	4	5
	0.0024					
trials	2871	810	378	220	140	106

Theorem

MINIMUM-WEIGHT PATH can be solved in $O(-\ln \varepsilon \cdot 4.32^k |G|)$ time by choosing x = 0.3k.

< 4 → <

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Increasing the number of colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) \rightarrow O(2^{k+x}|G|)$$

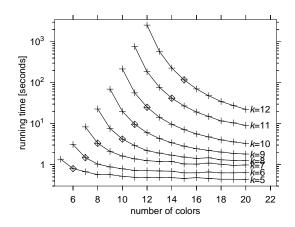
Probability P_c for colorful path (k = 8, c = 0.001):

x	0	1	2	3	4	5
	0.0024					
trials	2871	810	378	220	140	106

Theorem

MINIMUM-WEIGHT PATH can be solved in $O(-\ln \varepsilon \cdot 4.32^k |G|)$ time by choosing x = 0.3k.

But: Higher memory usage


Falk Hüffner (Univ. Jena)

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Increasing the number of colors

Runtimes for the yeast protein interaction network (highlighted point of each curve marks worst-case optimum)

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Exploiting lower bounds

Idea

Use a known solution to prune "hopeless" table entries.

• Discard entries that already have a weight higher than the known solution.

イロト イポト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Exploiting lower bounds

Idea

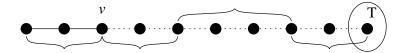
Use a known solution to prune "hopeless" table entries.

- Discard entries that already have a weight higher than the known solution.
- Discard entries when

weight + (minimum edge weight · edges left)

is higher than the weight of the known solution.

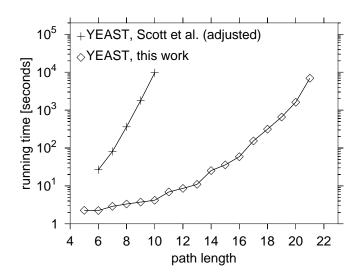
イロト イポト イヨト イヨト


Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Precalculated lower bounds


For each vertex u and a range of lengths $1 \le i \le d$, determine the minimum weight of a path of i edges that starts at u.

Experiments with Parameterized Approaches to Hard Graph Problems

4 A N

Minimum-Weight Path	Minimum-Weight Path experiments	Balanced Subgraph	Balanced Subgraph experiments
Yeast netwo	rk		

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Graphical user interface: FASPAD

view Help			rast signal	ing Pathw	ay Detectio	n				- 0
. Tien Deil										
b •	·	el 🤉 🧚	72.3	1 -						
ptions Inform	mation		Graph	1 Graph 2	Graph 3	Graph 4	Graph 5	Graph 6	Graph 3	7
Main Start n	odes End n	odes				-	_			
					(~ (-			
Load Graph						b (CHURS)		
/home/tzsnoc	py/uni/reposi	tory/colorcod			4	• '	•	•		
Path	length 8				6	b (
					7	r '	~			
Number of	paths 50				6	-				
	Alter 70	96						π		
51	ccess	_			6		1			
	ability 99.9	%				\mathbf{T}	- 1	~		
					4		-			
					•		-			
						\mathbf{V}	I			
						K	I			
						\mathbf{V}				
						F	I			
						F				
Search	Stop	eltab				F				
		el tab				F				
			Prot 3	Prot 4		F			Prot 8	
sult list 1 Re Weight	sult list 2 R	esult list 3		Prot 4 CG32130		Prot		ot 7	Prot 8	
sult list 1 Re Weight 0.317429	suit list 2 Re Prot 1	esult list 3 Prot 2	Prot 3		Prot 5	Prot	5 Pr	ot 7		Selecte
sult list 1 Re Weight 0.317429 0.323947	sult list 2 Re Prot 1 CG6998	Prot 2 CG3227	Prot 3 CG5450 CG13030	CG32130	Prot 5 CG18743[C	Prot CG7945	5 Pr CG1	ot 7	65063	Selecte
sult list 1 Pe Weight 0.317429 0.323947	suk list 2 Re Prot 1 CG6998 CG1871	esult list 3 Prot 2 CG3227 CG8929	Prot 3 CG5450 CG13030	CG32130 CG10108 CG11761	Prot 5 CG18743[C CG1856	Prot 0 CG7945 CG7057	5 Pr CG11 CG11	ot 7 1761 C1 18811 C1	G5063 G3779	Selecte
sult list 1 Re Weight 0.317429 0.323947 0.339116	suk list 2 R Prot 1 CG6998 CG1871 CG32130	cG3227 CG3227 CG8929 CG18743[C	Prot 3 CG5450 CG13030 CG7945 CG18743[C	CG32130 CG10108 CG11761	Prot 5 CG18743[C CG1856 CG17599	Prot CG7945 CG7057 CG9740	5 Pr CG12 CG12 CG44	ot 7 1761 Cr 3811 Cr 522 Cr 774 Cr	G5063 G3779 G11454	Selecte
sult list 1 Pe Weight 0.317429 0.323947 0.339116 0.368402	suk list 2 Ri Prot 1 C06998 C01871 C032130 C05450	esult list 3 Prot 2 CG3227 CG8929 CG18743[C CG32130	Prot 3 CG5450 CG13030 CG7945 CG18743[C	CG32130 CG10108 CG11761 CG7945	Prot 5 CG18743[C CG1856 CG17599 CG11761	Prot - CG7945 CG7057 CG9740 CG1435	5 Pr CG11 CG12 CG22	ot 7 1761 C4 1811 C4 522 C4 774 C4	05063 03779 011454 08282	Selecte
sult list 1 Pe Weight 0.317429 0.323947 0.339116 0.368402 0.373768	suk list 2 Pu Prot 1 C06998 C01871 C032130 C05450 C015283	esult list 3 Prot 2 CG3227 CG8929 CG18743[C CG32130 CG14168	Prot 3 C05450 C013030 C07945 C018743[C0 C07224	CG32130 CG10108 CG11761 CG7945 CG13030	Prot 5 CG18743]C CG1856 CG1759 CG11761 CG1856	Prot (CG7945 CG7057 CG9740 CG1435 CG7057	5 Pr CG11 CG12 CG12 CG12	ot 7 1761 C1 1811 C1 522 C1 774 C1 5322 C1	G5063 G3779 G11454 G8282 G3779	

Free software, available at http://theinf1.informatik.uni-jena.de/faspad/

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Conclusion & Outlook

Color-coding, with some algorithm engineering, is a practical method for finding signaling pathways in protein interaction networks.

イロト イポト イヨト イヨト

э

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

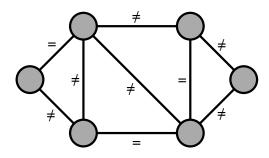
Conclusion & Outlook

Color-coding, with some algorithm engineering, is a practical method for finding signaling pathways in protein interaction networks.

Future work:

- Pathway queries
- Richer motifs (cycles, trees, ...)
- "Divide-and-color" [KNEIS et al., WG 2007; Chen et al., SODA 2007]: Improvement from 4.32^k to 4^k . But: " $\Omega(4^k)$ "

イロト 不得下 イヨト イヨト

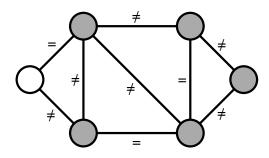

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Balanced graphs

Definition

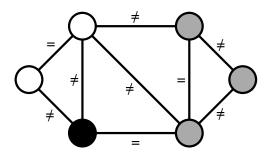

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Balanced graphs

Definition

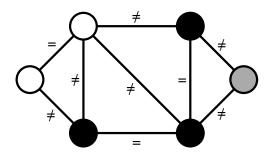

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Balanced graphs

Definition

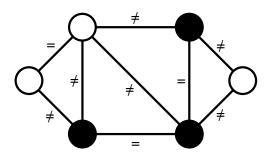

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Balanced graphs

Definition


Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Balanced graphs

Definition

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Characterization of balance

Special case

Bipartite graphs are balanced graphs that contain only \neq -edges.

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems

18/33

3

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

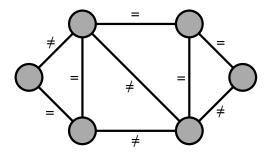
Characterization of balance

Special case

Bipartite graphs are balanced graphs that contain only \neq -edges.

Theorem (Kőnig 1936)

A signed graph is balanced iff it contains no cycle with an odd number of \neq -edges.


(4 個)ト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

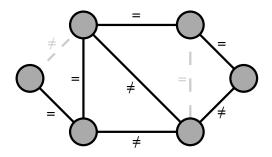
Balanced Subgraph

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems

◆ロト ◆聞ト ◆ヨト ◆ヨト

୬ < ୍ 19/33


э

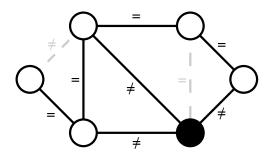
Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Balanced Subgraph

◆ロト ◆聞ト ◆ヨト ◆ヨト


3

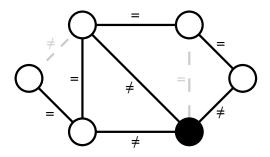
Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Balanced Subgraph

◆ロト ◆聞ト ◆ヨト ◆ヨト


3

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Balanced Subgraph

Definition (BALANCED SUBGRAPH)

Input: A graph with edges labeled by = or \neq .

Task: Find a minimum set of edges to delete such that the graph becomes balanced.

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems

▲ 同 ト ▲ 臣

< ∃ >

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Balanced Subgraph: known results

- BALANCED SUBGRAPH is NP-hard, since it is a generalization of MAX-CUT (MAX-CUT is the special case where all edges are ≠)
- A solution that keeps at least 87.8% of the edges can be found in polynomial time [DASGUPTA et al., WEA 2006]
- A solution that deletes at most *c* times the edges that need to be deleted can probably not be found in polynomial time [KHOT, STOC 2002]

イロト 不得下 イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Applications of Balanced Subgraph

- "Monotone subsystems" in gene regulatory networks [DasGupta et al., WEA 2006]
- Balance in social networks

[HARARY, Mich. Math. J. 1953]

• Portfolio risk analysis

[HARARY et al., IMA J. Manag. Math. 2002]

• Minimum energy state of magnetic materials (spin glasses)

[KASTELEYN, J. Math. Phys. 1963]

• Stability of fullerenes

[Došlić & Vikičević, Discr. Appl. Math. 2007]

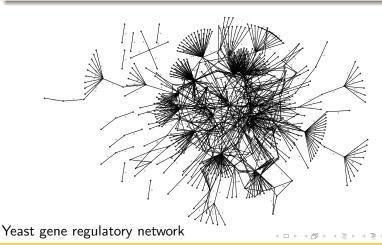
• Integrated circuit design

[CHIANG et al., IEEE Trans. CAD of IC & Sys. 2007]

Falk Hüffner (Univ. Jena)

- 4 同 1 - 4 回 1 - 4 回 1

Minimum-Weight Path experiments


Balanced Subgraph

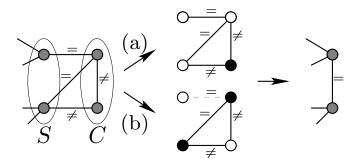
Balanced Subgraph experiments 000

Graph structure

Idea

Exploit the structure of the relevant networks

Falk Hüffner (Univ. Jena)


Experiments with Parameterized Approaches to Hard Graph Problems

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Vertex cut-based data reduction

イロト イポト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Data reduction scheme

Data reduction scheme

- Find cut S that cuts off small component C
- For each of the (up to symmetry) 2^{|S|-1} colorings of S, determine the size of an optimal solution for G[S ∪ C]
- Replace in G the subgraph $G[S \cup C]$ by an equivalent smaller gadget

- 4 同 1 4 日 1 4 日 1

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Data reduction scheme

Data reduction scheme

- Find cut S that cuts off small component C
- For each of the (up to symmetry) 2^{|S|-1} colorings of S, determine the size of an optimal solution for G[S ∪ C]
- Replace in G the subgraph $G[S \cup C]$ by an equivalent smaller gadget

Subsumes all 8 data reduction rules given by $_{\rm [Wernicke,\ 2003]}$ for Edge Bipartization

- 4 同 1 4 日 1 4 日 1

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Filling in the data reduction scheme

• Need to restrict both |S| and |C|: we use $|S| \le 4$ and $|C| \le 32$

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems

3

ヘロト 人間 ト 人 ヨト 人 ヨトー

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Filling in the data reduction scheme

- Need to restrict both |S| and |C|: we use $|S| \le 4$ and $|C| \le 32$
- How to construct gadgets that behave equivalently to $S \cup C$?

イロト 不得下 イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

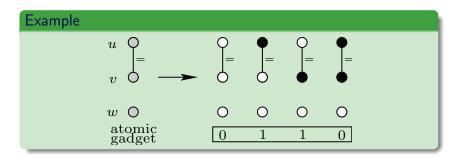
Gadget construction

Idea

Use atomic gadgets and describe their effect by cost vectors.

イロト イポト イヨト イヨト

Minimum-Weight Path experiments


Balanced Subgraph

Balanced Subgraph experiments 000

Gadget construction

Idea

Use atomic gadgets and describe their effect by cost vectors.

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems

イロト イポト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Gadget construction

Theorem

With 10 atomic gadgets, we can emulate the behavior of any component behind a 3-vertex cut.

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems

3

- 4 同 1 - 4 回 1 - 4 回 1

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Gadget construction

Theorem

With 10 atomic gadgets, we can emulate the behavior of any component behind a 3-vertex cut.

Theorem

All cuts with |S| = 2 and $|C| \ge 1$ and and all cuts with |S| = 3and $|C| \ge 2$ are subject to data reduction.

(4 個)ト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Gadget construction

Theorem

With 10 atomic gadgets, we can emulate the behavior of any component behind a 3-vertex cut.

Theorem

All cuts with |S| = 2 and $|C| \ge 1$ and and all cuts with |S| = 3and $|C| \ge 2$ are subject to data reduction.

• 4-cuts: 2948 atomic gadgets

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems

(4 個)ト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Gadget construction

Problem

How to determine an appropriate set of atomic cost vectors for a given cost vector?

イロト イポト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Gadget construction

Problem

How to determine an appropriate set of atomic cost vectors for a given cost vector?

Vector Sum Problem

Given a set S of n vectors of length l with nonnegative integer components and a target vector t of length l, find a sub-(multi)-set of vectors from S that sums to t.

(4 個)ト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Gadget construction

Problem

How to determine an appropriate set of atomic cost vectors for a given cost vector?

Vector Sum Problem

Given a set S of n vectors of length l with nonnegative integer components and a target vector t of length l, find a sub-(multi)-set of vectors from S that sums to t.

• "Equality-constrained multidimensional knapsack"

(4 個)ト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Gadget construction

Problem

How to determine an appropriate set of atomic cost vectors for a given cost vector?

Vector Sum Problem

Given a set S of n vectors of length l with nonnegative integer components and a target vector t of length l, find a sub-(multi)-set of vectors from S that sums to t.

- "Equality-constrained multidimensional knapsack"
- In our implementation: simple branch & bound

- 4 同 1 - 4 回 1 - 4 回 1

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Gadget construction

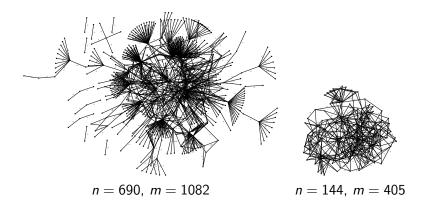
Problem

How to determine an appropriate set of atomic cost vectors for a given cost vector?

Vector Sum Problem

Given a set S of n vectors of length l with nonnegative integer components and a target vector t of length l, find a sub-(multi)-set of vectors from S that sums to t.

- "Equality-constrained multidimensional knapsack"
- In our implementation: simple branch & bound
- Sometimes this is a bottleneck!


- 4 同 1 - 4 回 1 - 4 回 1

Minimum-Weight Path experiments

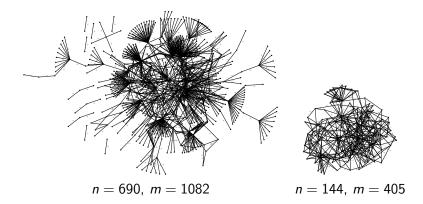
Balanced Subgraph

Balanced Subgraph experiments 000

Reduction... and then?

Falk Hüffner (Univ. Jena)

Experiments with Parameterized Approaches to Hard Graph Problems


イロト イポト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments 000

Reduction... and then?

After data reduction, a hard "core" remains.

イロト イポト イヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Fixed-parameter tractability

Theorem

BALANCED SUBGRAPH can be solved in $O(2^k \cdot m^2)$ time by a reduction to EDGE BIPARTIZATION and using an algorithm based on iterative compression [Guo et al., JCSS 2006].

(4 伊下 4 戸下 4 戸下

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments

Fixed-parameter tractability

Theorem

BALANCED SUBGRAPH can be solved in $O(2^k \cdot m^2)$ time by a reduction to EDGE BIPARTIZATION and using an algorithm based on iterative compression [Guo et al., JCSS 2006].

A heuristic speedup trick can give large speedups over this worst-case running time.

(4 個) トイヨト イヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments •00

Experimental results

			A	Approximation			Exact alg.	
Data set	п	т	$k \ge$	$k \leq$	t [min]	k	t [min]	
EGFR	330	855	196	219	7	210	108	
Yeast	690	1082	0	43	77	41	1	
Macr.	678	1582	218	383	44	374	1	

Experiments with Parameterized Approaches to Hard Graph Problems

◆ロト ◆聞ト ◆ヨト ◆ヨト

Minimum-Weight Path experiments

Balanced Subgraph

Balanced Subgraph experiments •00

Experimental results

			Approximation			Exact alg.	
Data set	n	т	$k \ge$	$k \leq$	t [min]	k	t [min]
EGFR	330	855	196	219	7	210	108
Yeast	690	1082	0	43	77	41	1
Macr.	678	1582	218	383	44	374	1

• Yeast is not solvable without reducing 4-cuts

• A real-world network with 688 vertices and 2208 edges could not be solved

イロト イポト イヨト イヨト

Minimum-Weight Path	Minimum-Weight Path experiments	Balanced Subgraph	Balanced Subgraph experiments
Outlook			

- Kernel for BALANCED SUBGRAPH?
- Directed case of BALANCED SUBGRAPH (delete minimum number of edges to remove all unbalanced cycles): FPT?
 - Problem: Characterization by two-coloring does not work
- The data reduction scheme is applicable to all graph problems where a coloring or a subset of the vertices is sought. For example:
 - VERTEX COVER
 - Dominating Set
 - 3-Coloring
 - Feedback Vertex Set

but: need small cuts (e.g., small-world networks)

・ 同下 ・ ヨト ・ ヨト

Minimum-Weight Path	Minimum-Weight Path experiments	Balanced Subgraph	Balanced Subgraph experiments
References			

• Falk Hüffner, Sebastian Wernicke, and Thomas Zichner: Algorithm engineering for color-coding with applications to signaling pathway detection. Algorithmica.

Accepted for publication, June 2007.

 Falk Hüffner, Nadja Betzler, and Rolf Niedermeier: Optimal edge deletions for signed graph balancing. Proc. 6th Workshop on Experimental Algorithms (WEA '07), 2007.

LNCS 4525, pp. 297-310.

• Falk Hüffner:

Algorithms and Experiments for Parameterized Approaches to Hard Graph Problems.

PhD thesis, Universität Jena, to appear.

イロト イポト イヨト イヨト