Fixed-Parameter and Integer Programming Approaches for Clustering Problems

Falk Hüffner

joint work with Sharon Bruckner¹ Christian Komusiewicz² Adrian Liebtrau³ Rolf Niedermeier² Sven Thiel³ Johannes Uhlmann²

¹Institut für Mathematik, Freie Universität Berlin

²Institut für Softwaretechnik und Theoretische Informatik, TU Berlin

³Institut für Informatik, Friedrich-Schiller-Universität Jena

27 September 2013

F. Hüffner et al. (TU Berlin)

Fixed-Parameter and Integer Programming Approaches for Clustering Problems

1/28

Wikipedia interlanguage links

	Labyrinthulomycetes – W	ikipedia, the free end	cyclopedia – Ice	eweasel		
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> t	ory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp					
W Labyrinthulomycete:	s - Wikipedi 🔶					
W en.wikipedia.	org/wiki/Labyrinthulomycetes		☆ ✔ @	문 Google		
~				Log in / create ac	count	
3-71 0				• • • • • • • • • • • • • • •		
1 QCW	Article Talk	Read	Edit View hist	ory Search	Q	
8 48 7						
W/ A	Labyrinthulomyce	tes				
WIKIPEDIA The Free Encyclopedia	From Wikipedia, the free encyclopedia					
	The Labyrinthulomycetes (ICBN) o	r Labyrinthulea ^[1]				
Main page	(ICZN), or Slime nets are a class of	protists that produce	Slime nets			
Contents	a network of filaments or tubes, ^[2] which serve as tracks					
Featured content	for the cells to glide along and absorb nutrients for them. There are two main groups, the labyrinthulids and thraustochyrids. They are mostly marine, commonly					
Current events						
Random article						
Donate to Wikipedia	found as parasites on alga and seag	ass or as		- Alter		
Interaction	decomposers on dead plant material. They also include					
Toolbox	some parasites of marine invertebrates.					
h Brint (our ort	Although they are outside the cells, the filaments are					
Finit/export	surrounded by a membrane. They an	e formed and	×3000	10-m 3.00kU Sma		
	a sagenogen or bothrosome. The cel	ls are uninucleate	The cell with the network of filaments Aplanochytrium sp.			
Cesky	and typically ovoid, and move back a	Scientific classification				
Español	amorphous network at speeds varying from 5-150 µm per minute. Among the labyrinthulids the cells are enclosed					
日本語			Kingdom: Chromalyeolata			
Македонски	within the tubes, and among the thra	ustochytrids they are	Rhylum: Heterokontonbyta			
Norsk (bokmål)	attached to their sides.		Class: Labyrinthulomycetes DICK 2001 or			
n at al. (TH Daulta)	Final Deventer and In		- Augusta - ala	- for Churtonia - Droblem		

Wikipedia interlanguage links

	Labyrinthulomycetes - Wikip	edia, the free en	cycloped	lia – Icewe	asel		×
<u>F</u> ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> t	ory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp						
W Labyrinthulomycete:	- Wikipedi 💠						~
🔗 👿 en.wikipedia.	org/wiki/Labyrinthulomycetes			☆ ~ @	∛∃∨ Google	Q	
C. m. C					🕹 Log in /	create accour	nt P
	Article Talk	Read	Edit Vi	ew history	Search	c	2
1 48 7 D 7	Labyrinthulomycetes	5					:
WIKIPEDIA The Free Encyclopedia	From Wikipedia, the free encyclopedia						-
Main page Contents Featured content Current events Random article Donate to Wikipedia	The Labyrinthulomycetes (ICBN) or La (IC2N), or Slime nets are a class of prot a network of filaments or tubes, ^[2] which is for the cells to glide along and absorb nu There are two main groups, the labyrinth thraustochytrids. They are mostly manine found as parasites on alga and seagrass	byrinthulea ^[1] ists that produce serve as tracks trients for them. ulids and , commonly or as			Slime nets		,
Interaction Toolbox	some parasites of marine invertebrates. Although they are outside the cells, the fi	ad plant material. They also include narine invertebrates. utside the cells, the filaments are					
► Print/export	etzschleimpilze		The cel	x3000 10m	twork of filaments Apla	nochytrium sp.	
Deutsch Die Netzschleimpilze oder Schleimnetze (Labyrinthulomycetes) bilden ein Taxon innerhalb der BATE Stramenopilen und sind somit näher mit Braunalgen, Goldalgen		Scientific classification Domain: Eukaryota Kingdom: Chromalveolata					
Македонски Norsk (bokmål)	attached to their sides.		Phylum: Heterokontophyta Class: Labyrinthulomycetes DICK, 2001 O			. 2001 OF	
er et al. (TU Berlin)	Fixed-Parameter and Integ	er Programmi	ng Appi	roaches	for Clustering Pi	roblems	

Reflin

Colorful	Components
000000	000000000

Highly-Connected Deletion

Conclusions

Wikipedia interlanguage link graph example

Model

COLORFUL COMPONENTS

Instance: An undirected graph G = (V, E) and a coloring of the vertices $\chi : V \to \{1, ..., c\}$.

Task: Delete a minimum number of edges such that all connected components are *colorful*, that is, they do not contain two vertices of the same color.

Complexity of Colorful Components

• COLORFUL COMPONENTS with two colors can be solved in $O(\sqrt{n}m)$ time by matching techniques.

Complexity of Colorful Components

- COLORFUL COMPONENTS with two colors can be solved in $O(\sqrt{n}m)$ time by matching techniques.
- COLORFUL COMPONENTS is NP-hard already with three colors.

Complexity of Colorful Components

- COLORFUL COMPONENTS with two colors can be solved in $O(\sqrt{n}m)$ time by matching techniques.
- COLORFUL COMPONENTS is NP-hard already with three colors.
- COLORFUL COMPONENTS can be approximated by a factor of $4\ln(c+1)$.

Observation

COLORFUL COMPONENTS can be seen as the problem of destroying by edge deletions all bad paths, that is, simple paths between equally colored vertices.

Observation

COLORFUL COMPONENTS can be seen as the problem of destroying by edge deletions all bad paths, that is, simple paths between equally colored vertices.

Observation

Unless the graph is already colorful, we can always find a bad path with at most *c* edges, where *c* is the number of colors.

Observation

COLORFUL COMPONENTS can be seen as the problem of destroying by edge deletions all bad paths, that is, simple paths between equally colored vertices.

Observation

Unless the graph is already colorful, we can always find a bad path with at most *c* edges, where *c* is the number of colors.

Theorem

COLORFUL COMPONENTS can be solved in $O(c^k \cdot m)$ time, where k is the number of edge deletions.

Colorful Components

Highly-Connected Deletion

Conclusions O

Limits of fixed-parameter algorithms

Exponential Time Hypothesis (ETH)

3-SAT cannot be solved within a running time of $2^{o(n)}$ or $2^{o(m)}$.

Limits of fixed-parameter algorithms

Exponential Time Hypothesis (ETH)

3-SAT cannot be solved within a running time of $2^{o(n)}$ or $2^{o(m)}$.

Theorem

COLORFUL COMPONENTS with three colors cannot be solved in $2^{o(k)} \cdot n^{O(1)}$ unless the ETH is false.

Data reduction

Let $V' \subseteq V$ be a colorful subgraph. If the cut between V' and $V \setminus V'$ is at least as large as the connectivity of V', then merge V' into a single vertex.

HITTING SET

Instance: A ground set *U* and a set of *circuits* S_1, \ldots, S_n with $S_i \subseteq U$ for $1 \leq i \leq n$. **Task:** Find a minimum-size *hitting set*, that is, a set $H \subseteq U$ with $H \cap S_i \neq \emptyset$ for all $1 \leq i \leq n$.

HITTING SET

Instance: A ground set *U* and a set of *circuits* S_1, \ldots, S_n with $S_i \subseteq U$ for $1 \leq i \leq n$. **Task:** Find a minimum-size *hitting set*, that is, a set $H \subseteq U$ with $H \cap S_i \neq \emptyset$ for all $1 \leq i \leq n$.

Observation

We can reduce COLORFUL COMPONENTS to HITTING SET: The ground set U is the set of edges, and the circuits to be hit are the paths between identically-colored vertices.

HITTING SET

Instance: A ground set *U* and a set of *circuits* S_1, \ldots, S_n with $S_i \subseteq U$ for $1 \leq i \leq n$. **Task:** Find a minimum-size *hitting set*, that is, a set $H \subseteq U$ with $H \cap S_i \neq \emptyset$ for all $1 \leq i \leq n$.

Observation

We can reduce COLORFUL COMPONENTS to HITTING SET: The ground set U is the set of edges, and the circuits to be hit are the paths between identically-colored vertices.

Problem

Exponentially many circuits!

In an *implicit hitting set* problem, the circuits have an implicit description, and a polynomial-time oracle is available that, given a putative hitting set *H*, either confirms that *H* is a hitting set or produces a circuit that is not hit by *H*.

In an *implicit hitting set* problem, the circuits have an implicit description, and a polynomial-time oracle is available that, given a putative hitting set *H*, either confirms that *H* is a hitting set or produces a circuit that is not hit by *H*.

Several approaches to solving implicit hitting set problems are known, which use an ILP solver as a black box for the HITTING SET subproblems.

10/28

Colorful Components

Highly-Connected Deletion

Conclusions O

Method 2: Row generation

Idea

Instead of using the ILP solver as a black box, we can use *row generation* (*"lazy constraints"*) to add constraints inside the solver.

Method 3: Clique Partitioning ILP formulation

- 0/1 variables for each vertex pair indicates whether it is contained in a cluster
- Constraints ensure consistency

Cutting Planes

Definition

A *cutting plane* is a valid constraint that cuts off fractional solutions.

Cutting Planes

Definition

A *cutting plane* is a valid constraint that cuts off fractional solutions.

Tree cut

Let $T = (V_T, E_T)$ be a subgraph of G that is a tree such that all leaves L of the tree have color c, but no inner vertex has. Then

$$\sum_{e\in E_T} d_e \geqslant |L|-1$$

is a valid inequality.

Wikipedia interlanguage links

- 30 most popular languages
- 11,977,500 vertices, 46,695,719 edges
- 2,698,241 connected components, of which 2,472,481 are already colorful
- largest connected component has 1,828 vertices and 14,403 edges
- solved optimally by data reduction + CLIQUE PARTITIONING algorithm in about 80 minutes
- 618,660 edges deleted, 434,849 inserted.

Highly-Connected Deletion

Conclusions O

Random graph model

F. Hüffner et al. (TU Berlin)

Fixed-Parameter and Integer Programming Approaches for Clustering Problems

15/28

Greedy Heuristics (random instances)

	optimal	average error	max. error
move-based	25.8%	4.9%	38.7 %
merge-based	58.2%	0.9 %	12.5 %

Clustering

Graph-based clustering

Find a partition of the vertices of a graph into clusters such that

- Vertices within a cluster have many connections;
- Vertices in different clusters have few connections.

Clustering

Graph-based clustering

Find a partition of the vertices of a graph into clusters such that

- Vertices within a cluster have many connections;
- Vertices in different clusters have few connections.

Definition ([Hartuv & Shamir '00])

A graph with *n* vertices is called *highly connected* if more than n/2 edges need to be deleted to make it disconnected.

Clustering

Graph-based clustering

Find a partition of the vertices of a graph into clusters such that

- Vertices within a cluster have many connections;
- Vertices in different clusters have few connections.

Definition ([Hartuv & Shamir '00])

A graph with *n* vertices is called *highly connected* if more than n/2 edges need to be deleted to make it disconnected.

Lemma ([Chartrand '66])

A graph with n vertices is highly connected iff each vertex has degree more than n/2.

Clustering algorithm

Min-cut algorithm [Hartuv & Shamir '00]

If the graph is highly connected, terminate; otherwise, delete the edges of a minimum cut and recurse on the two sides.

Clustering algorithm

Min-cut algorithm [Hartuv & Shamir '00]

If the graph is highly connected, terminate; otherwise, delete the edges of a minimum cut and recurse on the two sides.

Applications

- Clustering cDNA fingerprints;
- Finding complexes in protein-protein interaction (PPI) data;
- Grouping protein sequences hierarchically into superfamily and family clusters;
- Finding families of regulatory RNA structures.

Maximizing Edge Coverage

HIGHLY CONNECTED DELETION

Instance: An undirected graph. **Task:** Delete a minimum number of edges such that each remaining connected component is highly connected.

Maximizing Edge Coverage

HIGHLY CONNECTED DELETION

Instance: An undirected graph. **Task:** Delete a minimum number of edges such that each remaining connected component is highly connected.

Goal

Find optimal solutions for HIGHLY CONNECTED DELETION.

Maximizing Edge Coverage

HIGHLY CONNECTED DELETION

Instance: An undirected graph. **Task:** Delete a minimum number of edges such that each remaining connected component is highly connected.

Goal

Find optimal solutions for HIGHLY CONNECTED DELETION.

Lemma

The min-cut algorithm can delete $\Omega(k^2)$ edges, where k is the optimal solution size.

Complexity

Theorem

HIGHLY CONNECTED DELETION is NP-hard even on 4-regular graphs.

Complexity

Theorem

HIGHLY CONNECTED DELETION is NP-hard even on 4-regular graphs.

Theorem

If the Exponential Time Hypothesis (ETH) is true, then HIGHLY CONNECTED DELETION cannot be solved in subexponential time (that is, $2^{o(k)} \cdot n^{O(1)}$ or $2^{o(n)} \cdot n^{O(1)}$ time).

Lemma

In a highly connected graph, if two vertices are connected by an edge, they have at least one common neighbor; otherwise, they have at least three common neighbors.

21/28

Lemma

In a highly connected graph, if two vertices are connected by an edge, they have at least one common neighbor; otherwise, they have at least three common neighbors.

Reduction rule

If there are two vertices that are connected by an edge but have no common neighbors, then delete the edge.

Reduction rule

If G contains a vertex set S such that

- |S| ≥ 4,
- *G*[*S*] is highly connected, and
- $|D(S)| \leq 0.3 \cdot \sqrt{|S|}$,

then remove S from G. Here, D(S) is the size of the edge cut between S and the rest of the graph.

Reduction rule

If G contains a vertex set S such that

- |S| ≥ 4,
- *G*[*S*] is highly connected, and
- $|D(S)| \leq 0.3 \cdot \sqrt{|S|}$,

then remove S from G. Here, D(S) is the size of the edge cut between S and the rest of the graph.

Theorem

HIGHLY CONNECTED DELETION admits a problem kernel with at most $10 \cdot k^{1.5}$ vertices, which can be computed in $O(n^2 \cdot mk \log n)$ time.

Using a combination of kernelization and dynamic programming, we obtain:

Theorem

HIGHLY CONNECTED DELETION can be solved in $O(3^{4k} \cdot k^2 + n^2mk \cdot \log n)$ time.

Column generation

Idea

Use a 0/1-variable to indicate that a particular cluster is in the solution, and successively add only those variables ("columns") that are "needed", that is, their introduction improves the objective.

PPI networks: data reduction

	п	т	Δk	Δk [%]	n′	m′
<i>C. elegans</i> phys.	157	153	100	92.6	11	38
C. elegans all	3613	6828	5204	80.1	373	1562
<i>M. musculus</i> phys.	4146	7097	5659	85.3	426	1339
<i>M. musculus</i> all	5252	9640	7609	84.8	595	1893
<i>A. thaliana</i> phys.	1872	2828	2057	83.1	187	619
<i>A. thaliana</i> all	5704	12627	8797	79.5	866	3323

n', m': size of largest connected component after data reduction

PPI networks: Column generation

- Using column generation, an solve optimally e.g. PPI network of *A. thaliana* with 5 704 vertices and 12 627 edges, in a few hours (k = 12096 edges deleted)
- Cannot solve network of *S. pombe* with 3735 vertices and 51 620 edges

Heuristics (A. thaliana network)

27/28

FPT and ILP

Observations

- FPT algorithms give useful running time bounds and are often fast in practice
- ILP approaches are often even faster in practice, but do not have useful running time bounds
- Combining kernelization and ILPs works quite well

