Implementation Aspects of Data Reduction

Falk Hüffner

Humboldt-Universität zu Berlin

3 September 2010

Kernelization

Reduces a problem in polynomial time to a decision-equivalent, provably smaller one

Data reduction rule

If applicable, reduces a problem in polynomial time to a smaller one, from whose solution an optimal solution to the original problem can be reconstructed.

Experiments with Data Reduction

• Many works, e.g. on Linear Programming, SAT, Steiner Tree

Experiments with Data Reduction

- Many works, e.g. on Linear Programming, SAT, Steiner Tree
- But few sytematic studies on general NP-hard problems in the parameterized context

Dominating Set on random planar graphs, $n \in \{500, 1500, 4000\}$

[Alber, Betzler & Niedermeier, Ann. Oper. Res. '06]

• Kernel size: 67k

Dominating Set on random planar graphs, $n \in \{500, 1500, 4000\}$

- Kernel size: 67k
- $\bullet\,$ With kernelization rules: \approx 70 % of vertices removed

Dominating Set on random planar graphs, $n \in \{500, 1500, 4000\}$

- Kernel size: 67k
- $\bullet\,$ With kernelization rules: $\approx 70\,\%$ of vertices removed
- With additional, "theoretically powerless" rules: \approx 99 % of vertices removed

Dominating Set on random planar graphs, $n \in \{500, 1500, 4000\}$

- Kernel size: 67k
- $\bullet\,$ With kernelization rules: $\approx 70\,\%$ of vertices removed
- With additional, "theoretically powerless" rules: \approx 99 % of vertices removed
- Internet graphs: 99.9% removed

Dominating Set on random planar graphs, $n \in \{500, 1500, 4000\}$

- Kernel size: 67k
- $\bullet\,$ With kernelization rules: $\approx 70\,\%$ of vertices removed
- With additional, "theoretically powerless" rules: \approx 99 % of vertices removed
- Internet graphs: 99.9% removed

Dominating Set on random planar graphs, $n \in \{500, 1500, 4000\}$

[Alber, Betzler & Niedermeier, Ann. Oper. Res. '06]

- Kernel size: 67k
- $\bullet\,$ With kernelization rules: \approx 70 % of vertices removed
- With additional, "theoretically powerless" rules: \approx 99 % of vertices removed
- Internet graphs: 99.9% removed

Lesson

Try all reduction rules, independent of proven effect.

Solve Clique as Vertex Cover on the complement graph ($n \approx 1000$)

[Abu-Khzam et al., ALENEX '04]

• 3 global reductions: LP, flow, crown reduction

Solve Clique as Vertex Cover on the complement graph ($n \approx 1000$)

[Abu-Khzam et al., ALENEX '04]

- 3 global reductions: LP, flow, crown reduction
- Times vary from 0.07 s to 1 h

Solve Clique as Vertex Cover on the complement graph ($n \approx 1000$)

[Abu-Khzam et al., ALENEX '04]

- 3 global reductions: LP, flow, crown reduction
- Times vary from 0.07 s to 1 h
- Between 0 % and 100 % of edges removed

Solve Clique as Vertex Cover on the complement graph ($n \approx 1000$)

[Abu-Khzam et al., ALENEX '04]

- 3 global reductions: LP, flow, crown reduction
- Times vary from 0.07 s to 1 h
- Between 0 % and 100 % of edges removed

Solve Clique as Vertex Cover on the complement graph ($n \approx 1000$)

[Abu-Khzam et al., ALENEX '04]

- 3 global reductions: LP, flow, crown reduction
- Times vary from 0.07 s to 1 h
- Between 0 % and 100 % of edges removed

Lesson

Try cheapest rules first.

Solve Clique as Vertex Cover on the complement graph ($n \approx 1000$)

[Abu-Khzam et al., ALENEX '04]

- 3 global reductions: LP, flow, crown reduction
- Times vary from 0.07 s to 1 h
- Between 0 % and 100 % of edges removed

Lesson

Try cheapest rules first.

Vertex Cover on planar graphs [Alber, Dorn & Niedermeier,

Discrete Appl. Math.]

• 60-70 % reduction

Cluster Editing [Böcker, Briesemeister & Klau, Algorithmica '10]

• Parameter-dependent reduction rules

Cluster Editing [Böcker, Briesemeister & Klau, Algorithmica '10]

• Parameter-dependent reduction rules

Cluster Editing [Böcker, Briesemeister & Klau, Algorithmica '10]

- Parameter-dependent reduction rules
- Where to take k from?
 - Upper bound (e.g. from heuristic solution)

Cluster Editing [Böcker, Briesemeister & Klau, Algorithmica '10]

• Parameter-dependent reduction rules

Where to take k from?

- Upper bound (e.g. from heuristic solution)
- Try them increasingly

Cluster Editing [Böcker, Briesemeister & Klau, Algorithmica '10]

• Parameter-dependent reduction rules

Where to take k from?

- Upper bound (e.g. from heuristic solution)
- Try them increasingly

Cluster Editing [Böcker, Briesemeister & Klau, Algorithmica '10]

• Parameter-dependent reduction rules

Where to take k from?

- Upper bound (e.g. from heuristic solution)
- Try them increasingly

Lesson

Consider using parameter-dependent reduction rules.

Implementation issues

Case Studies (III)

Implementation issues

Case Studies (III)

Implementation issues

Case Studies (III)

Lesson

Consider solving a harder problem than the one you need to solve.

Falk Hüffner (HU Berlin)

Implementation Aspects of Data Reduction

Claim

Since data reduction is polynomial, but solving is exponential, running time for reduction does not matter much.

Claim

Since data reduction is polynomial, but solving is exponential, running time for reduction does not matter much.

[Dehne et al., IWPEC '06]

Falk Hüffner (HU Berlin)

Implementation Aspects of Data Reduction

Problem

In a branching, we still need the unmodified graph.

Problem

In a branching, we still need the unmodified graph.

Possible solutions

Copy whole graph in each step

Problem

In a branching, we still need the unmodified graph.

Possible solutions

- Copy whole graph in each step
- Use a persistent data structure

Problem

In a branching, we still need the unmodified graph.

Possible solutions

- Copy whole graph in each step
- 2 Use a persistent data structure
- Use an "undo" function for each branch or reduction that undos all changes.

Definition

A *persistent data structure* is a data structure which always preserves the previous version of itself when it is modified.

Definition

A *persistent data structure* is a data structure which always preserves the previous version of itself when it is modified.

In purely functional programming languages, all data structures are persistent.

Definition

A *persistent data structure* is a data structure which always preserves the previous version of itself when it is modified.

In purely functional programming languages, all data structures are persistent.

E.g. persistent big-endian Patricia trees:

- $O(\log n + \deg v)$ neighborhood enumeration
- $O(\log n)$ edge test
- $O(\log n)$ edge insertion/deletion
- $O(\log n)$ vertex insertion
- $O(\log n \deg v)$ vertex deletion

Advantages

- No linear copy overhead
- Very easy to implement
- little error prone
- Quick and easy operations like intersection of neighbor sets

Disadvantages

• Logarithmic overhead on all operations

Implementation issues

Implicit undo data structures

[Abu-Khzam, Langston, Mouawad & Nolan, FAW '10]

Falk Hüffner (HU Berlin)

Implementation Aspects of Data Reduction

Implicit undo data structures

- O(deg v) neighborhood enumeration
- O(1) edge test
- O(1) edge insertion/deletion
- O(1) vertex insertion
- O(deg v) vertex deletion

Advantages

- Very little time overhead
- 5–10 times faster than simple adjacency list

Disadvantages

- Large memory overhead
- Nontrivial graph modifications (e.g., edge contraction) become complicated

Caching

Example

Keep a sorted map from vertex degree to the list of vertices of that degree.

Caching

Example

Keep a sorted map from vertex degree to the list of vertices of that degree.

Problem

Need to find edges whose common neighbors induce a clique.

Caching

Example

Keep a sorted map from vertex degree to the list of vertices of that degree.

Problem

Need to find edges whose common neighbors induce a clique.

Solution

Record for each edge $\{u, v\}$ the number of edges in the graph $G[N(u) \cap N(v)]$, using a priority queue.

[Gramm, Guo, Hüffner & Niedermeier, ACM J. Exp. Algorithmics '08]

Model extensions

Definition

Data reduction is polynomial-time preprocessing of instances of NP-hard problems that allows retrieving an optimal solution.

Model extensions

Definition

Data reduction is polynomial-time preprocessing of instances of NP-hard problems that allows retrieving an optimal solution.

Result

When not using branching, even preprocessing that is not provably polynomial-time can help.

[Hüffner, Betzler & Niedermeier, J. Comb. Optim. '09]

Model extensions

Definition

Data reduction is polynomial-time preprocessing of instances of NP-hard problems that allows retrieving an optimal solution.

Result

When not using branching, even preprocessing that is not provably polynomial-time can help.

[Hüffner, Betzler & Niedermeier, J. Comb. Optim. '09]

Result

Using non-optimality-preserving data reductions, a "kernel" guaranteeing approximation factor 1.5 can be found for Vertex Cover. [Asgeirsson & Stein, WEA '07]

Falk Hüffner (HU Berlin)

Implementation Aspects of Data Reduction

• Order of data reduction rules

- Order of data reduction rules
- Graph data reduction language and framework

- Order of data reduction rules
- Graph data reduction language and framework
- Data reduction and enumeration