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Case Studies Implementation issues

Kernelization
Reduces a problem in polynomial time to a
decision-equivalent, provably smaller one

Data reduction rule
If applicable, reduces a problem in polynomial time to a
smaller one, from whose solution an optimal solution to
the original problem can be reconstructed.
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Case Studies Implementation issues

Experiments with Data Reduction

Many works, e. g. on Linear Programming, SAT,
Steiner Tree

But few sytematic studies on general NP-hard
problems in the parameterized context
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Case Studies

Dominating Set on random planar graphs,
n ∈ {500,1 500,4 000}
[Alber, Betzler & Niedermeier, Ann. Oper. Res. ’06]

Kernel size: 67k

With kernelization rules: ≈ 70% of vertices removed
With additional, “theoretically powerless” rules:
≈ 99% of vertices removed
Internet graphs: 99.9% removed

Lesson
Try all reduction rules, independent of proven effect.
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Case Studies (II)

Solve Clique as Vertex Cover on the complement graph
(n ≈ 1000)
[Abu-Khzam et al., ALENEX ’04]

3 global reductions: LP, flow, crown reduction

Times vary from 0.07 s to 1 h
Between 0 % and 100 % of edges removed

Lesson
Try cheapest rules first.

Vertex Cover on planar graphs [Alber, Dorn & Niedermeier,

Discrete Appl. Math.]

60-70 % reduction
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Case Studies (III)

Cluster Editing [Böcker, Briesemeister & Klau, Algorithmica ’10]

Parameter-dependent reduction rules

Where to take k from?

Upper bound (e. g. from heuristic solution)
Try them increasingly

Lesson
Consider using parameter-dependent reduction rules.
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Case Studies (III)
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Case Studies (III)

Lesson
Consider solving a harder problem than the one you
need to solve.

Falk Hüffner (HU Berlin) Implementation Aspects of Data Reduction 8/17



Case Studies Implementation issues

Case Studies (III)

Lesson
Consider solving a harder problem than the one you
need to solve.

Falk Hüffner (HU Berlin) Implementation Aspects of Data Reduction 8/17



Case Studies Implementation issues

Implementing Data Reduction

Claim
Since data reduction is polynomial, but solving is
exponential, running time for reduction does not matter
much.

[Dehne et al., IWPEC ’06]
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Implementing Data Reduction

Problem
In a branching, we still need the unmodified graph.

Possible solutions

1 Copy whole graph in each step
2 Use a persistent data structure
3 Use an “undo” function for each branch or

reduction that undos all changes.
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Persistent data structures

Definition
A persistent data structure is a data structure which
always preserves the previous version of itself when it
is modified.

In purely functional programming languages, all data
structures are persistent.
E. g. persistent big-endian Patricia trees:

O(logn+ degv) neighborhood enumeration
O(logn) edge test
O(logn) edge insertion/deletion
O(logn) vertex insertion
O(logndegv) vertex deletion
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Persistent data structures

Advantages
No linear copy overhead
Very easy to implement
little error prone
Quick and easy operations like intersection of
neighbor sets

Disadvantages
Logarithmic overhead on all operations
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Implicit undo data structures

[Abu-Khzam, Langston, Mouawad & Nolan, FAW ’10]
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Implicit undo data structures

O(degv) neighborhood enumeration
O(1) edge test
O(1) edge insertion/deletion
O(1) vertex insertion
O(degv) vertex deletion

Advantages
Very little time overhead
5–10 times faster than simple adjacency list

Disadvantages
Large memory overhead
Nontrivial graph modifications (e. g., edge
contraction) become complicated
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Caching

Example
Keep a sorted map from vertex degree to the list of
vertices of that degree.

Problem
Need to find edges whose common neighbors induce a
clique.

Solution
Record for each edge {u,v} the number of edges in the
graph G[N(u) ∩N(v)], using a priority queue.
[Gramm, Guo, Hüffner & Niedermeier, ACM J. Exp. Algorithmics ’08]
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Model extensions

Definition
Data reduction is polynomial-time preprocessing of
instances of NP-hard problems that allows retrieving an
optimal solution.

Result
When not using branching, even preprocessing that is
not provably polynomial-time can help.
[Hüffner, Betzler & Niedermeier, J. Comb. Optim. ’09]

Result
Using non-optimality-preserving data reductions, a
“kernel” guaranteeing approximation factor 1.5 can be
found for Vertex Cover. [Asgeirsson & Stein, WEA ’07]
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Outlook

Order of data reduction rules

Graph data reduction language and framework
Data reduction and enumeration
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