| Introduction | Algorithms | Experiments |
|--------------|------------|-------------|
| 0000         | 000000     | 00000000    |

# Topology-Free Querying of Protein Interaction Networks

#### Sharon Bruckner <u>Falk Hüffner</u> Richard M. Karp Ron Shamir Roded Sharan

Tel Aviv University

4 May 2009



# Protein complexes

- A protein complex is a group of proteins which interact with each other to perform some task.
- Many protein complexes are known, in particular for model organisms like yeast.
- Problem: does a known protein complex also exists in the protein interaction network of another species?



Algorithms

Experiments 00000000

# Complex query as Constrained Subgraph Isomorphism





Algorithms

Experiments 00000000

# Complex query as Constrained Subgraph Isomorphism



Algorithms

Experiments 00000000

# Complex query as CONSTRAINED SUBGRAPH ISOMORPHISM





Algorithms

Experiments 00000000

# Complex query as Constrained Subgraph Isomorphism

# Query



| Introduction |  |
|--------------|--|
| 0000         |  |

Experiments 00000000

# Problems with Constrained Subgraph Isomorphism

• Not error tolerant



| Introduction |  |
|--------------|--|
| 0000         |  |

Experiments 00000000

# Problems with Constrained Subgraph Isomorphism

- Not error tolerant
- Interactions between query proteins (*topology*) might not be available



| Introduction |  |
|--------------|--|
| 0000         |  |

Experiments 00000000

# Problems with CONSTRAINED SUBGRAPH ISOMORPHISM

- Not error tolerant
- Interactions between query proteins (*topology*) might not be available
- Computationally very hard



Experiments 00000000

# Complex Query as Colorful Connected Subgraph



#### COLORFUL CONNECTED SUBGRAPH

**Input:** An undirected, vertex colored graph *G*. **Output:** Find a connected subgraph of *G* whose vertices use each color exactly once (*colorful subgraph*).

Experiments 00000000

# Complex Query as Colorful Connected Subgraph



#### COLORFUL CONNECTED SUBGRAPH

**Input:** An undirected, vertex colored graph *G*. **Output:** Find a connected subgraph of *G* whose vertices use each color exactly once (*colorful subgraph*).

# Dynamic Programming

#### Idea

Instead of looking at all  $O(n^k)$  possible subgraphs, look only at  $O(2^k)$  color sets.



# Dynamic Programming

#### Idea

Instead of looking at all  $O(n^k)$  possible subgraphs, look only at  $O(2^k)$  color sets.

T[v, S] for  $v \in V$  and S a set of colors: true if there is a connected subgraph of |S| vertices containing v with exactly the colors in S

$$T[v, S] = \bigvee_{\substack{u \in N(v) \\ S_1 \uplus S_2 = S}} T[v, S_1] + T[u, S_2] + w(u, v)$$



# Dynamic Programming

#### Idea

Instead of looking at all  $O(n^k)$  possible subgraphs, look only at  $O(2^k)$  color sets.

T[v, S] for  $v \in V$  and S a set of colors: true if there is a connected subgraph of |S| vertices containing v with exactly the colors in S

$$T[v, S] = \bigvee_{\substack{u \in N(v) \\ S_1 \uplus S_2 = S}} T[v, S_1] + T[u, S_2] + w(u, v)$$

#### Theorem

COLORFUL CONNECTED SUBGRAPH with k colors can be solved in  $O(3^k|E|)$  time.

## Fixed-parameter tractability

#### Theorem

COLORFUL CONNECTED SUBGRAPH with k colors can be solved in  $O(3^k|E|)$  time.

#### Corollary

COLORFUL CONNECTED SUBGRAPH is fixed-parameter tractable with respect to k.

# Integer Linear Programming

An Integer Linear Program (ILP) can maximize a linear function under linear constraints and integrality constraints.



## Integer Linear Programming

An Integer Linear Program (ILP) can maximize a linear function under linear constraints and integrality constraints.

**Binary variables** 

 $c_{v}, v \in V$ :  $v = 1 \iff v$  is part of the complex

#### Constraints

For each color 
$$\gamma$$
:  $\sum_{v \in V: color(v) = \gamma} c_v = 1$ 

# Integer Linear Programming

An Integer Linear Program (ILP) can maximize a linear function under linear constraints and integrality constraints.

**Binary variables** 

 $c_{v}, v \in V$ :  $v = 1 \iff v$  is part of the complex

#### Constraints

For each color 
$$\gamma$$
:  $\sum_{v \in V: color(v) = \gamma} c_v = 1$ 

#### Central problem

Given a graph G = (V, E) and binary variables  $c_v, v \in V$ , find linear constraints such that  $G[\{v \mid c_v = 1\}]$  is connected.

# CONNECTED SUBGRAPH als ILP





# CONNECTED SUBGRAPH als ILP





# CONNECTED SUBGRAPH als ILP





# CONNECTED SUBGRAPH als ILP



- An (arbitrary) selected vertex servers as sink
- Each other selected vertex is source of a flow of 1
- Only selected vertices take part in flow

## Model extensions

• More than one color per vertex



# Model extensions

- More than one color per vertex
- Insertions/Deletions



# Model extensions

- More than one color per vertex
- Insertions/Deletions
- Maximize edge weight of complex



| Intro | d | u | С | t | i | 0 | n |  |
|-------|---|---|---|---|---|---|---|--|
| 000   | 0 |   |   |   |   |   |   |  |

# Complete ILP

maximize 
$$\sum_{(v,w)\in E} \omega_{vw} e_{vw}$$
 (1)

subject to

$$\sum_{v \in V} c_v = t \tag{2}$$

$$\sum_{v \in V} r_v = 1 \tag{3}$$

$$e_{vw} \le c_v \land e_{vw} \le c_w \qquad \forall (v,w) \in E \tag{4}$$

$$\begin{aligned} & \underset{w_{W}}{\overset{}} \geq 1/2c_{v} + 1/2c_{w} - 1/2 \quad \forall (v, w) \in E \\ & f_{ww} = -f_{wv} \qquad \forall (v, w) \in E \end{aligned} \tag{5}$$

$$\sum_{w \in N(v)} f_{vw} = c_v - tr_v \qquad \qquad \forall v \in V$$
(7)

$$f_{vw}, f_{wv} \leq (t-1)e_{vw} \qquad \forall (v,w) \in E$$
 (8)

$$\sum_{\nu \in V} g_{\nu\gamma} \le 1 \qquad \qquad \forall \gamma \in C \tag{10}$$

$$\sum_{v \in V} \sum_{\gamma \in \Gamma(v)} g_{v\gamma} = t - N_{\text{ins}}$$
(11

$$g_{v\gamma} \leq c_v \qquad \qquad \forall v \in V, \gamma \in \Gamma(v)$$

Bruckner et al. (TAU)

(12)



• First do data reduction



- First do data reduction
  - $\bullet\,$  only 5 % of the vertices are associated with one or more colors



- First do data reduction
  - $\bullet\,$  only 5 % of the vertices are associated with one or more colors
  - many non-colored vertices are too far from any colored vertex to be useful

- First do data reduction
  - $\bullet\,$  only 5 % of the vertices are associated with one or more colors
  - many non-colored vertices are too far from any colored vertex to be useful
- For each remaining connected component:



- First do data reduction
  - $\bullet\,$  only 5 % of the vertices are associated with one or more colors
  - many non-colored vertices are too far from any colored vertex to be useful
- For each remaining connected component:
  - Try a heuristic that does not allow indels



- First do data reduction
  - $\bullet\,$  only 5 % of the vertices are associated with one or more colors
  - many non-colored vertices are too far from any colored vertex to be useful
- For each remaining connected component:
  - Try a heuristic that does not allow indels
  - If this fails:



- First do data reduction
  - $\bullet\,$  only 5 % of the vertices are associated with one or more colors
  - many non-colored vertices are too far from any colored vertex to be useful
- For each remaining connected component:
  - Try a heuristic that does not allow indels
  - If this fails:
    - If few colors, but large instance, use dynamic programming



- First do data reduction
  - $\bullet\,$  only 5 % of the vertices are associated with one or more colors
  - many non-colored vertices are too far from any colored vertex to be useful
- For each remaining connected component:
  - Try a heuristic that does not allow indels
  - If this fails:
    - If few colors, but large instance, use dynamic programming
    - Otherwise, use ILP





Protein-protein interaction networks:

- yeast (5 430 proteins, 39 936 interactions)
- fly (6650 proteins, 21275 interactions)
- human (7915 proteins, 28972 interactions)

Query several hundred complexes of size 4-25 from:

- yeast, fly, human (interaction information available)
- bovine, mouse, and rat (not enough interaction information available)



Algorithms

Experiments

## Number of complexes found





# Evaluation of results

- Functional coherence: Percentage of proposed complexes that are significantly enriched with "GO-Terms"
- Specificity: Percentage of proposed complexes that overlap significantly with known complexes



| Introd | uction |
|--------|--------|
| 0000   |        |

Experiments

# Quality of matches



# TORQUE Web-Server

#### Input for query species

- Query complex
- (Enter a list of proteins or leave
- blank to use all FASTA file proteins)
- FASTA format sequences

#### Input for target species



O Upload my own target species data.

PPI network

FASTA format sequences

#### Set algorithm parameters

Interaction probability threshold [0.0-0.99] 0. BLAST threshold [1e-99..1e-3] 1E

#### http://www.cs.tau.ac.il/~bnet/torque.html

Bruckner et al. (TAU)



#### Saccharomyces cerevisiae 🗘

Browse...



# TORQUE Web-Server



Blue: matched nodes in the target species. Within each node, top: target protein, bottom: the matching query protein. Grey: insertions of target proteins. The box lists the deleted query proteins, if any.

# Best match for the DNA synthesome complex of the mouse in the network of yeast



Bruckner et al. (TAU)

Topology-Free Querying of Protein Interaction Networks

# Summary

- A topology-free querying model yields significant complex query results.
- With a combination of dynamic programming and ILP, even difficult instances can be solved optimally.

