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Signaling pathways

[www.cellsignal.com]
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Signaling pathways

Definition

A signaling pathway is a cascade of successive protein interactions
that the cell uses to react to stimuli.

Definition

A linear signaling pathway contains each protein only once.

Linear signaling pathways

are easy to understand and analyze;

can serve as a seed structure for experimental investigation of
more complex mechanisms.

Goal

Automated discovery of linear signaling pathways
[Steffen et al., BMC Bioinf. 2002]
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Graph model

Protein interaction network:

Proteins are nodes

Interactions are undirected edges

Edges are annotated with interaction probability (obtained
e. g. by two-hybrid screening)

Definition

A linear signaling pathway is a sequence of distinct proteins, where
each interacts strongly with the previous one.

Most Probable Path [Scott et al., J. Comp. Biol. 2006]

Input: Graph G = (V ,E ), interaction probabilities p : E → [0, 1],
integer k > 0.
Task: Find a non-overlapping path v1, . . . , vk of length k in G
that maximizes p(v1, v2) · . . . · p(vk−1, vk).
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Falk Hüffner (Univ. Jena) Optimal Solutions for Hard Network Problems in Bioinformatics 5/52



Signaling pathways Balanced subsystems Isolated Clique enumeration

Graph model

Most Probable Path [Scott et al., J. Comp. Biol. 2006]

Input: Graph G = (V ,E ), interaction probabilities p : E → [0, 1],
integer k > 0.
Task: Find a non-overlapping path v1, . . . , vk of length k in G
that maximizes p(v1, v2) · . . . · p(vk−1, vk).

Setting w(e) := − log(p(e)):

Minimum-Weight Path

Input: Graph G = (V ,E ), weights w : E → R+, integer k > 0.
Task: Find a non-overlapping path v1, . . . , vk of length k in G
that minimizes w(v1, v2) + · · ·+ w(vk−1, vk).
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Example: yeast network

4 400 proteins, 14 300 interactions, looking for paths of length 5–15
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Minimum-Weight Path

Theorem

Minimum-Weight Path is NP-hard [Garey&Johnson 1979].

Idea

Exploit the fact that the paths sought for are rather short
(≈ 5–15): restrict the exponential part of the runtime to k
(parameterized complexity).
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Fixed-parameter tractability

Parameterized complexity is an approach to finding exact solutions
to NP-hard problems by confining the combinatorial explosion to a
parameter.

Definition

A problem is called fixed-parameter tractable with respect to a
parameter k if an instance of size n can be solved in f (k) · nO(1)

time for an arbitrary function f .
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Color-coding

Color-coding is a method for solving Minimum-Weight Path
that is fast for short path lengths.

Color-coding [Alon, Yuster&Zwick, J. ACM 1995]

randomly color each vertex of the graph with one of k colors

hope that all vertices in the subgraph searched for obtain
different colors (colorful)

solve the Minimum-Weight Path under this assumption
(which is much quicker)

repeat these trial until it is reasonably certain that the path
was colorful at least once

Result: exponential part of the runtime depends only on k
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Dynamic programming for Minimum-Weight Colorful Path

Idea

Table entry W [v ,C ] stores the minimum-weight path that ends
in v and uses exactly the colors in C .

W [B, { , , }] = 4
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Dynamic programming for Minimum-Weight Colorful Path

Coloring c : V → {1, . . . , k}

Recurrence

W [v ,C ] = min
u∈N(v)

(W [u,C \ {c(v)}] + w(u, v))

Each table entry can be calculated in O(n) time

n · 2k table entries

 Running time per trial: O(2k · n2)

Falk Hüffner (Univ. Jena) Optimal Solutions for Hard Network Problems in Bioinformatics 12/52



Signaling pathways Balanced subsystems Isolated Clique enumeration

Dynamic programming for Minimum-Weight Colorful Path

Coloring c : V → {1, . . . , k}

Recurrence

W [v ,C ] = min
u∈N(v)

(W [u,C \ {c(v)}] + w(u, v))

Each table entry can be calculated in O(n) time

n · 2k table entries

 Running time per trial: O(2k · n2)

Falk Hüffner (Univ. Jena) Optimal Solutions for Hard Network Problems in Bioinformatics 12/52



Signaling pathways Balanced subsystems Isolated Clique enumeration

Color-coding running time

O(2k · n2) time per trial

To obtain error probability ε, one needs O(− ln ε · ek) trials

Theorem ([Alon et al., JACM 1995])

Minimum-Weight Path can be solved in O(− ln ε · 5.44k |G |)
time.
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Implementations of color-coding

Find minimum-weight paths of length 10 in the yeast protein
interaction networks within 3 hours (n = 4400, k = 10)
[Scott et al., J. Comp. Biol. 2006]

Pathway queries
[Shlomi et al., BMC Bioinformatics 2006]

Tree queries
[Dost et al., RECOMB 2007]

Protein docking
[Mayrose et al., Nucleic Acids Research 2007]

Balanced paths
[Cappanera&Scutellà, INOC 2007]

Automated text headline generation
[Deshpande et al., NAACL HLT 2007]
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Increasing the number of colors

Idea

Use k + x colors instead of k colors.

Trial runtime:
O(2k |G |) → O(2k+x |G |)

Probability Pc for colorful path (k = 8, ε = 0.001):

x 0 1 2 3 4 5

Pc 0.0024 0.0084 0.0181 0.0310 0.0464 0.0636
trials 2871 816 378 220 146 106

Theorem

Minimum-Weight Path can be solved in O(− ln ε · 4.32k |G |)
time by choosing x = 0.3k.

But: Higher memory usage

Falk Hüffner (Univ. Jena) Optimal Solutions for Hard Network Problems in Bioinformatics 15/52
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Increasing the number of colors
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Running times for the yeast protein interaction network
(highlighted point of each curve marks worst-case optimum)
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State space search

Idea

Consider the dynamic programming as a state space search
problem (shortest path problem in an implicitly defined graph).

From a state (u,C ), we can go to (v ,C ∪ {c(v)}) for v ∈ N(u)
with c(v) 6= c(u), at cost w(u, v).

Lower bounds

can be used to prune states

can guide the search (A*)

Simple lower bound:

weight + (minimum edge weight · edges left)
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Precalculated lower bounds

For each vertex u and a range of lengths 1 ≤ i ≤ d , determine the
minimum weight of a path of i edges that starts at u.

|S| edges d edgesd edges (k − |S|) − 2d edges

known path remaining path

start segment middle segment end segment
v

Falk Hüffner (Univ. Jena) Optimal Solutions for Hard Network Problems in Bioinformatics 18/52
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Yeast network

YEAST, Scott et al. (adjusted)

YEAST, this work
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Network Comparison

|V | |E | clust. coeff. avg. degree max. degree

4 389 14 319 0.067 6.5 237

7 009 20 440 0.030 5.8 175

DROSOPHILA, 20 best paths

DROSOPHILA, 100 best paths

YEAST, 20 best paths

YEAST, 100 best paths
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Simulations: Robustness of Algorithm
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Pathway Query

Queries of S. cerevisiae pathways in the D. melanogaster network

Path length Avg. Time [s] Max. Time [s] Successful Queries

4 2.24 2.57 98%
5 2.33 3.61 93%
6 3.00 23.02 81%
7 4.52 93.32 52%
8 7.49 225.61 31%
9 11.38 245.78 13%
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Graphical user interface: FASPAD

Free software, available at
http://theinf1.informatik.uni-jena.de/faspad/
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Conclusion&Outlook

Color-coding, with some algorithm engineering, is a practical
method for finding signaling pathways in protein interaction
networks.

Future work:

Richer motifs (cycles, trees, . . . )

“Divide-and-color” [Kneis et al., WG 2007; Chen et al., SODA 2007]:
Improvement from 4.32k to 4k . But: “Θ(4k)”
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Balanced subsystems
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Drosophila regulatory network

[DasGupta et al., Biosystems 2007]
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Balanced graphs

Definition

An undirected graph with edges labeled by = or 6= (signed graph)
is balanced iff it contains no cycle with an odd number of 6=-edges.

Theorem (Kőnig 1936)

A signed graph is balanced iff the vertices can be colored with two
colors such that the relation on each edge holds.

/=
/=

/=

/=

/=

/==

=

=
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Balanced Subgraph

/=

/=

/=

/=

=

=

=

=

=

Definition (Balanced Subgraph)

Input: A graph with edges labeled by = or 6=.
Task: Find a minimum set of edges to delete such that the graph
becomes balanced.
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Applications of Balanced Subgraph

“Monotone subsystems” in gene regulatory networks
[DasGupta et al., WEA 2006]

Balance in social networks
[Harary, Mich. Math. J. 1953]

e. g. Harary: A structural analysis of the situation in the
Middle East in 1956, J. Conflict Resolution 1961

Minimum energy state of magnetic materials (spin glasses)
[Kasteleyn, J. Math. Phys. 1963]

Stability of fullerenes
[Došlić &Vukičević, Discr. Appl. Math. 2007]

Integrated circuit design
[Chiang et al., IEEE Trans. CAD of IC &Sys. 2007]
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Balanced Subgraph: known results

Balanced Subgraph is NP-hard, since it is a
generalization of Max-Cut (Max-Cut is the special case
where all edges are 6=)

A solution that keeps at least 87.8 % of the edges can be
found in polynomial time
[Thagard&Verbeurgt, Cogn. Sci. 1998]

A solution that deletes at most c times the edges that need to
be deleted can probably not be found in polynomial time
[Khot, STOC 2002]
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Graph structure

Idea

Exploit the structure of the relevant networks
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Data reduction

Data reduction

Replace the instance in polynomial time by a simpler, equivalent
one.

Example

Delete all degree-1 vertices.
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Vertex cut-based data reduction

=

=

=

=

=

=

=
6=

6=

6=

6=

6=

6=

S C

(a)

(b)
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Data reduction scheme

Data reduction scheme

Find cut S that cuts off small component C

For each of the (up to symmetry) 2|S |−1 colorings of S ,
determine the size of an optimal solution for G [S ∪ C ]

Replace in G the subgraph G [S ∪ C ] by an equivalent smaller
gadget

Subsumes all 8 data reduction rules given by [Wernicke, 2003] for
Edge Bipartization
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Filling in the data reduction scheme

Need to restrict both |S | and |C |: we use |S | ≤ 4
and |C | ≤ 32

How to construct gadgets that behave equivalently to S ∪ C?
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Gadget construction

Idea

Use atomic gadgets and describe their effect by cost vectors.

Example

0 011

u

v

w

=====
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Gadget construction

Theorem

With 10 atomic gadgets, we can emulate the behavior of any
component behind a 3-vertex cut.

Theorem

All cuts with |S | = 2 and |C | ≥ 1 and and all cuts with |S | = 3
and |C | ≥ 2 are subject to data reduction.

4-cuts: 2948 atomic gadgets
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Gadget construction

Problem

How to determine an appropriate set of atomic cost vectors for a
given cost vector?

Vector Sum Problem

Given a set S of n vectors of length l with nonnegative integer
components and a target vector t of length l , find a
sub-(multi)-set of vectors from S that sums to t.

“Equality-constrained multidimensional knapsack”

In our implementation: simple branch & bound

Sometimes this is a bottleneck!
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Reduction. . . and then?
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n = 690, m = 1082 n = 144, m = 405

After data reduction, a hard “core” remains.

Idea

Exploit the fact that only few edges need to be deleted.
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Reduction. . . and then?
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After data reduction, a hard “core” remains.

Idea

Exploit the fact that only few edges need to be deleted.
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Fixed-parameter tractability

Theorem

Balanced Subgraph can be solved in O(2k ·m) time by a
reduction to Edge Bipartization and using an algorithm based
on iterative compression [Guo et al. 2006].

A heuristic speedup trick can give large speedups over this
worst-case running time.
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Experimental results

Approximation Exact alg.

Data set n m k ≥ k ≤ t [min] k t [min]

EGFR 330 855 196 219 7 210 108
Yeast 690 1082 0 43 77 41 1
Macr. 678 1582 218 383 44 374 1

Yeast is not solvable without reducing 4-cuts

A real-world network with 688 vertices and 2208 edges could
not be solved
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Outlook

Directed case of Balanced Subgraph (delete minimum
number of edges to remove all unbalanced cycles): FPT?

Problem: Characterization by two-coloring does not work

The data reduction scheme is applicable to all graph problems
where a coloring or a subset of the vertices is sought. For
example:

Vertex Cover
Dominating Set
3-Coloring
Feedback Vertex Set

but: need small cuts (e. g., small-world networks)
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Protein complexes
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Clique Enumeration

Application

Analysis of biological, social, and other networks

Finding complexes in protein interaction networks

Clustering in data mining

Maximal clique enumeration

Simple model

NP-hard

up to 3n/3 cliques

Isolated cliques

More specific model

More efficient enumeration algorithms (FPT)
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c-Isolation

Definition (Ito, Iwama&Osumi, ESA 2005)

A vertex set S is called c-isolated if on average the vertices in S
have less than c neighbors outside of S .

Example: 2-isolation
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Enumerating maximal c-isolated cliques

Theorem

All maximal c-isolated cliques in a graph G can be enumerated in
O(2.89c · c2m) time.
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Comparison of isolation concepts

 min−2−isolated max−2−isolated2−isolated

Running times for enumeration of maximal cliques

min-c-isolation O(2c · cm + nm)
c-isolation O(4c · c4m)
max-c-isolation O(2.44c · cm)
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Finding complexes: Experimental setup

Question

Are isolated cliques a good model for complexes?

Experiment

We retrieved a protein interaction network from BioGRID:
S. cerevisiae: 5 195 nodes, 70 911 edges.

We retrieved annotation data for each protein from the
Saccharomyces Genome Database (SGD).

For each enumerated clique, we calculated the p-values for the
enrichment of annotation terms with the GO Termfinder
software, and chose the annotation term with the lowest
p-value.
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Finding complexes: Experimental results

General observations

running time: few seconds

maximal isolated cliques show more significant enrichment of
annotation terms than maximal cliques
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Finding complexes: Experimental results

c=1

c=4

c=7

c=10

2 4 6 8 10 12 14 16 18 20 22
clique size

-30
-28
-26
-24
-22
-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
0

lo
g 1

0 
p

Comparison of mean p-values of the enumerated maximal
min-c-isolated cliques and different values of c .
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Finding complexes: Experimental results

maximal

max-20-isolated

20-isolated

min-20-isolated

min-40-isolated
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Distribution of the number of enumerated cliques in the yeast
network for different isolation concepts and strengths.
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Falk Hüffner, Nadja Betzler, and Rolf Niedermeier:
Optimal edge deletions for signed graph balancing.
Proc. 6th Workshop on Experimental Algorithms (WEA ’07),
2007.
LNCS 4525, pp. 297–310.

Falk Hüffner:
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