Optimal Solutions for Hard Network Problems in Bioinformatics

Falk Hüffner

joint work with

Nadja Betzler Hannes Moser Christian Komusiewicz Rolf Niedermeier Sebastian Wernicke Thomas Zichner

> Friedrich-Schiller-Universität Jena Institut für Informatik

Computational Genomics Research Seminar Tel Aviv University 31 October 2007

イロト 不得下 イヨト イヨト

solated Clique enumeration

Outline

Signaling pathways

- Protein interaction networks
- Color-coding
- Speedups
- Simulations

2 Balanced subsystems

- Applications
- Data reduction
- Iterative compression

Isolated Clique enumeration

글 돈 옷 글 돈

solated Clique enumeration

Signaling pathways

Falk Hüffner (Univ. Jena)

solated Clique enumeration

Signaling pathways

Signaling pathways

Definition

A signaling pathway is a cascade of successive protein interactions that the cell uses to react to stimuli.

Definition

A linear signaling pathway contains each protein only once.

< 17 ▶

Signaling pathways

Definition

A signaling pathway is a cascade of successive protein interactions that the cell uses to react to stimuli.

Definition

A linear signaling pathway contains each protein only once.

Linear signaling pathways

- are easy to understand and analyze;
- can serve as a seed structure for experimental investigation of more complex mechanisms.

- 4 同 1 - 4 回 1 - 4 回 1

Signaling pathways

Definition

A signaling pathway is a cascade of successive protein interactions that the cell uses to react to stimuli.

Definition

A linear signaling pathway contains each protein only once.

Linear signaling pathways

- are easy to understand and analyze;
- can serve as a seed structure for experimental investigation of more complex mechanisms.

Goal

Automated discovery of linear signaling pathways

[STEFFEN et al., BMC Bioinf. 2002]

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

Graph model

Protein interaction network:

- Proteins are nodes
- Interactions are undirected edges
- Edges are annotated with interaction probability (obtained e.g. by two-hybrid screening)

(4 回 ト 4 ヨ ト 4 ヨ ト

Graph model

Protein interaction network:

- Proteins are nodes
- Interactions are undirected edges
- Edges are annotated with interaction probability (obtained e.g. by two-hybrid screening)

Definition

A linear signaling pathway is a sequence of distinct proteins, where each interacts strongly with the previous one.

Graph model

Protein interaction network:

- Proteins are nodes
- Interactions are undirected edges
- Edges are annotated with interaction probability (obtained e.g. by two-hybrid screening)

Definition

A linear signaling pathway is a sequence of distinct proteins, where each interacts strongly with the previous one.

MOST PROBABLE PATH [SCOTT et al., J. Comp. Biol. 2006]

Input: Graph G = (V, E), interaction probabilities $p : E \to [0, 1]$, integer k > 0. **Task:** Find a non-overlapping path v_1, \ldots, v_k of length k in G that maximizes $p(v_1, v_2) \cdot \ldots \cdot p(v_{k-1}, v_k)$.

Graph model

MOST PROBABLE PATH [SCOTT et al., J. Comp. Biol. 2006]

Input: Graph G = (V, E), interaction probabilities $p : E \to [0, 1]$, integer k > 0. Task: Find a non-overlapping path v_1, \ldots, v_k of length k in G that maximizes $p(v_1, v_2) \cdot \ldots \cdot p(v_{k-1}, v_k)$.

- 4 週 ト - 4 三 ト - 4 三 ト -

Graph model

MOST PROBABLE PATH [SCOTT et al., J. Comp. Biol. 2006]

Input: Graph G = (V, E), interaction probabilities $p : E \to [0, 1]$, integer k > 0. Task: Find a non-overlapping path v_1, \ldots, v_k of length k in G that maximizes $p(v_1, v_2) \cdot \ldots \cdot p(v_{k-1}, v_k)$.

Setting $w(e) := -\log(p(e))$:

MINIMUM-WEIGHT PATH

Input: Graph G = (V, E), weights $w : E \to \mathbb{R}_+$, integer k > 0. Task: Find a non-overlapping path v_1, \ldots, v_k of length k in G that minimizes $w(v_1, v_2) + \cdots + w(v_{k-1}, v_k)$.

3

イロト イポト イヨト イヨト

Signaling pathways

Balanced subsystems

solated Clique enumeration

Example: yeast network

4 400 proteins, 14 300 interactions, looking for paths of length 5-15

Falk Hüffner (Univ. Jena)

- - E

Signaling pathways

Balanced subsystems

solated Clique enumeration

Minimum-Weight Path

Theorem

MINIMUM-WEIGHT PATH is NP-hard [Garey & Johnson 1979].

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

3

- 4 同 1 - 4 回 1 - 4 回 1

Signaling pathways

Balanced subsystems

Isolated Clique enumeration

Minimum-Weight Path

Theorem

MINIMUM-WEIGHT PATH is NP-hard [Garey & Johnson 1979].

Idea

Exploit the fact that the paths sought for are rather short (\approx 5–15): restrict the exponential part of the runtime to k (parameterized complexity).

(4 伊下 4 戸下 4 戸下

Isolated Clique enumeration

Fixed-parameter tractability

Parameterized complexity is an approach to finding exact solutions to NP-hard problems by confining the combinatorial explosion to a parameter.

- 4 同 1 - 4 回 1 - 4 回 1

solated Clique enumeration

Fixed-parameter tractability

Parameterized complexity is an approach to finding exact solutions to NP-hard problems by confining the combinatorial explosion to a parameter.

Definition

A problem is called fixed-parameter tractable with respect to a parameter k if an instance of size n can be solved in $f(k) \cdot n^{O(1)}$ time for an arbitrary function f.

|田田 |田田 |田田

Color-coding

Color-coding is a method for solving $\rm MINIMUM\text{-}WEIGHT$ $\rm PATH$ that is fast for short path lengths.

Color-coding [Alon, Yuster & Zwick, J. ACM 1995]

- randomly color each vertex of the graph with one of k colors
- hope that all vertices in the subgraph searched for obtain different colors (colorful)
- solve the MINIMUM-WEIGHT PATH under this assumption (which is much quicker)
- repeat these trial until it is reasonably certain that the path was colorful at least once

Result: exponential part of the runtime depends only on k

イロト 不得下 イヨト イヨト

Isolated Clique enumeration

Dynamic programming for Minimum-Weight Colorful Path

Idea

Table entry W[v, C] stores the minimum-weight path that ends in v and uses exactly the colors in C.

- 4 同 1 - 4 回 1 - 4 回 1

Isolated Clique enumeration

Dynamic programming for Minimum-Weight Colorful Path

Idea

Table entry W[v, C] stores the minimum-weight path that ends in v and uses exactly the colors in C.

 $W[B, \{ \bigcirc, \bigcirc, \bigcirc \}] = 4$

・ 何 ト ・ ヨ ト ・ ヨ ト

Isolated Clique enumeration

Dynamic programming for Minimum-Weight Colorful Path

Coloring $c: V \rightarrow \{1, \ldots, k\}$

Recurrence

$$W[v, C] = \min_{u \in N(v)} (W[u, C \setminus \{c(v)\}] + w(u, v))$$

< 17 ▶

프 문 문 프 문

Isolated Clique enumeration

Dynamic programming for Minimum-Weight Colorful Path

Coloring $c: V \rightarrow \{1, \ldots, k\}$

Recurrence

$$W[v, C] = \min_{u \in N(v)} (W[u, C \setminus \{c(v)\}] + w(u, v))$$

- Each table entry can be calculated in O(n) time
- $n \cdot 2^k$ table entries

 \rightsquigarrow Running time per trial: $O(2^k \cdot n^2)$

不同 トイモト イモト

Color-coding running time

- $O(2^k \cdot n^2)$ time per trial
- To obtain error probability ε , one needs $O(-\ln \varepsilon \cdot e^k)$ trials

Theorem ([ALON et al., JACM 1995])

MINIMUM-WEIGHT PATH can be solved in $O(-\ln \varepsilon \cdot 5.44^k |G|)$ time.

(4 個) トイヨト イヨト

Isolated Clique enumeration

Implementations of color-coding

• Find minimum-weight paths of length 10 in the yeast protein interaction networks within 3 hours (n = 4400, k = 10)

[SCOTT et al., J. Comp. Biol. 2006]

Pathway queries

[Shlomi et al., BMC Bioinformatics 2006]

Tree queries

[Dost et al., RECOMB 2007]

Protein docking

[MAYROSE et al., Nucleic Acids Research 2007]

Balanced paths

[Cappanera & Scutellà, INOC 2007]

• Automated text headline generation

[DESHPANDE et al., NAACL HLT 2007]

イロト イポト イヨト イヨト

solated Clique enumeration

Increasing the number of colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) \rightarrow O(2^{k+x}|G|)$$

イロト イポト イヨト イヨト

3

solated Clique enumeration

Increasing the number of colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) \rightarrow O(2^{k+x}|G|)$$

Probability P_c for colorful path (k = 8, c = 0.001):

x	0	1	2	3	4	5
U	0.0024					
trials	2871	816	378	220	146	106

イロト イポト イヨト イヨト

Isolated Clique enumeration

Increasing the number of colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) \rightarrow O(2^{k+x}|G|)$$

Probability P_c for colorful path (k = 8, c = 0.001):

x	0	1	2	3	4	5
P_c	0.0024	0.0084	0.0181	0.0310	0.0464	0.0636
trials	2871	816	378	220	146	106

Theorem

MINIMUM-WEIGHT PATH can be solved in $O(-\ln \varepsilon \cdot 4.32^k |G|)$ time by choosing x = 0.3k.

Isolated Clique enumeration

Increasing the number of colors

Idea

Use k + x colors instead of k colors.

Trial runtime:

$$O(2^k|G|) \rightarrow O(2^{k+x}|G|)$$

Probability P_c for colorful path (k = 8, c = 0.001):

x	0	1	2	3	4	5
P _c	0.0024	0.0084	0.0181	0.0310	0.0464	0.0636
trials	2871	816	378	220	146	106

Theorem

MINIMUM-WEIGHT PATH can be solved in $O(-\ln \varepsilon \cdot 4.32^k |G|)$ time by choosing x = 0.3k.

But: Higher memory usage

solated Clique enumeration

Increasing the number of colors

Running times for the yeast protein interaction network (highlighted point of each curve marks worst-case optimum)

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

State space search

Idea

Consider the dynamic programming as a state space search problem (shortest path problem in an implicitly defined graph).

From a state (u, C), we can go to $(v, C \cup \{c(v)\})$ for $v \in N(u)$ with $c(v) \neq c(u)$, at cost w(u, v).

・ 同 ト ・ ヨ ト ・ ヨ ト

State space search

Idea

Consider the dynamic programming as a state space search problem (shortest path problem in an implicitly defined graph).

From a state (u, C), we can go to $(v, C \cup \{c(v)\})$ for $v \in N(u)$ with $c(v) \neq c(u)$, at cost w(u, v).

Lower bounds

- can be used to prune states
- can guide the search (A*)

State space search

Idea

Consider the dynamic programming as a state space search problem (shortest path problem in an implicitly defined graph).

From a state (u, C), we can go to $(v, C \cup \{c(v)\})$ for $v \in N(u)$ with $c(v) \neq c(u)$, at cost w(u, v).

Lower bounds

- can be used to prune states
- can guide the search (A*)

Simple lower bound:

```
weight + (minimum edge weight · edges left)
```

イロト 不得下 イヨト イヨト

Precalculated lower bounds

For each vertex u and a range of lengths $1 \le i \le d$, determine the minimum weight of a path of i edges that starts at u.

Signaling pathways	
000000000000000000000000000000000000000	00

Isolated Clique enumeration

Yeast network

Network Comparison

	V	E	clust. coeff.	avg. degree	max. degree
	4 389	14 319	0.067	6.5	237
-	7 009	20 440	0.030	5.8	175

◆ロト ◆聞ト ◆ヨト ◆ヨト

Ξ

solated Clique enumeration

Network Comparison

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

Isolated Clique enumeration

Simulations: Robustness of Algorithm

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

Queries of S.	cerevisiae pathwa	ays in the <i>D. me</i> i	<i>lanogaster</i> network
Path length	Avg. Time [s]	Max. Time [s]	Successful Queries
4	2.24	2.57	98%
5	2.33	3.61	93%
6	3.00	23.02	81%
7	4.52	93.32	52%
8	7.49	225.61	31%
9	11.38	245.78	13%

. . , .

Optimal Solutions for Hard Network Problems in Bioinformatics

◆ロト ◆聞ト ◆ヨト ◆ヨト

solated Clique enumeration

Graphical user interface: FASPAD

e.	Mew Help			rast signal	ing Pathw	ay Detectio	n			- 0
•										
	•	0.0	e) P 📌	72.3	1 -					
pt	ions Inform	nation		Graph	1 Graph 2	Graph 3	Graph 4 G	raph 5 Grap	h 6 Graph	7
	in Start no	des End n	ordee				_	-		
		Co Charl	0000			(🤛 (
L	ad Graph						-			
/h	ome/tzsnooj	y/uni/reposi	tory/colorcod			(💬 (P ┯		
	Pathle	angth 8					•• (₹₹		
	Number of	paths 50				6	-			
		Fiker 70				14	-	7		
							_			
	probi	bility 99.9	9%			4		17		
								-		
						4		Y		
							\mathcal{V}	I		
							K	Ţ		
							K	-		
							\mathcal{V}	T		
							K			
Se	arch S	itop D	eltab				K	-		
					1100		K			
			eltab ssult list 3 Prot 2	Prot 3	Prot 4		K		Prot 8	
sı	ilt list 1 Res	ult list 2 R	esult list 3		Prot 4 C032130	Prot 5	Prot 6		Prot 8 CG5063	Selecter
-51	lt list 1 Res	ut list 2 R	esult list 3 Prot 2	Prot 3 CG5450		1110	Prot 6	Prot 7		Selecter
1	lt list 1 Pes Weight 0.317429	uk list 2 Re Prot 1 CG6998	Prot 2 CG3227	Prot 3 CG5450 CG13030	CG32130	Prot 5 CG18743[C	Prot 6 (CG7945	Prot 7 CG11761	CG5063	Selecter
1	It list 1 Res Weight 0.317429 0.323947	Prot 1 CG6998 CG1871	Prot 2 CG3227 CG8929	Prot 3 CG5450 CG13030	CG32130 CG10108 CG11761	Prot 5 CG18743[C CG1856	Prot 6 (CG7945 CG7057	Prot 7 CG11761 CG13811	CG5063 CG3779	Selecter
	It list 1 Res Weight 0.317429 0.323947 0.339116	uk list 2 R Prot 1 CG6998 CG1871 CG32130	rsult list 3 Prot 2 CG3227 CG8929 CG18743[C	Prot 3 CG5450 CG13030 CG7945 CG18743[C0	CG32130 CG10108 CG11761	Prot 5 CG18743]C CG1856 CG17599	Prot 6 (CG7945 CG7057 CG9740	Prot 7 CG11761 CG13011 CG4622	C05063 C03779 C011454	Selecter
-si	It list 1 Res Weight 0.317429 0.323947 0.339116 0.368402	ut list 2 Pr Prot 1 CG6998 CG1871 CG32130 CG5450	esult list 3 Prot 2 CG3227 CG8929 CG18743[C CG32130	Prot 3 C05450 C013030 C07945 C018743[C0 C07224	CG32130 CG10108 CG11761 CG7945	Prot 5 CG18743[C CG1956 CG17599 CG11761	Prot 6 (CG7945) CG7057 CG9740 CG1435	Prot 7 CG311761 CG312761 CG32761 CG4622 CG2774	CG5063 CG3779 CG11454 CG8282	Selecter
	it list 1 Res Welght 0.317429 0.323947 0.339116 0.368402 0.373786	uk list 2 Pr Prot 1 CG6998 CG1871 CG32130 CG5450 CG15283	esult list 3 Prot 2 CG3227 CG8929 CG18743[C CG32130 CG14168	Prot 3 C05450 C019030 C07945 C018743[C0 C07224 C09951	CG32130 CG10108 CG11761 CG7945 CG13030	Prot 5 CG18743]C CG1856 CG17599 CG11761 CG1856	Prot 6 (CG7945 CG7057 CG9740 CG1435 CG7057	Prot 7 CG11761 CG19761 CG4622 CG2774 CG19011	CG5063 CG3779 CG11454 CG8282 CG3779	

Free software, available at http://theinf1.informatik.uni-jena.de/faspad/

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

Isolated Clique enumeration

Conclusion & Outlook

Color-coding, with some algorithm engineering, is a practical method for finding signaling pathways in protein interaction networks.

イロト イポト イヨト イヨト

Conclusion & Outlook

Color-coding, with some algorithm engineering, is a practical method for finding signaling pathways in protein interaction networks.

Future work:

- Richer motifs (cycles, trees, ...)
- "Divide-and-color" [KNEIS et al., WG 2007; Chen et al., SODA 2007]: Improvement from 4.32^k to 4^k . But: " $\Theta(4^k)$ "

- 4 同 1 - 4 回 1 - 4 回 1

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

イロト イポト イヨト イヨト

25/52

Balanced subsystems

solated Clique enumeration

Drosophila regulatory network

[DASGUPTA et al., Biosystems 2007]

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

イロト イポト イヨト イヨト

э

Balanced graphs

Definition

An undirected graph with edges labeled by = or \neq (signed graph) is balanced iff it contains no cycle with an odd number of \neq -edges.

프 문 문 프 문

Balanced graphs

Definition

An undirected graph with edges labeled by = or \neq (signed graph) is balanced iff it contains no cycle with an odd number of \neq -edges.

Theorem (Kőnig 1936)

Balanced graphs

Definition

An undirected graph with edges labeled by = or \neq (signed graph) is balanced iff it contains no cycle with an odd number of \neq -edges.

Theorem (Kőnig 1936)

Balanced graphs

Definition

An undirected graph with edges labeled by = or \neq (signed graph) is balanced iff it contains no cycle with an odd number of \neq -edges.

Theorem (Kőnig 1936)

Balanced graphs

Definition

An undirected graph with edges labeled by = or \neq (signed graph) is balanced iff it contains no cycle with an odd number of \neq -edges.

Theorem (Kőnig 1936)

Balanced subsystems

solated Clique enumeration

Balanced Subgraph

Optimal Solutions for Hard Network Problems in Bioinformatics

◆ロト ◆聞ト ◆ヨト ◆ヨト

E

Balanced subsystems

solated Clique enumeration

Balanced Subgraph

◆ロト ◆聞ト ◆ヨト ◆ヨト

E

Balanced subsystems

solated Clique enumeration

Balanced Subgraph

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

◆ロト ◆聞ト ◆ヨト ◆ヨト

√ へ (~
28/52

E

Isolated Clique enumeration

Balanced Subgraph

Definition (BALANCED SUBGRAPH)

Input: A graph with edges labeled by = or \neq . **Task:** Find a minimum set of edges to delete such that the graph becomes balanced.

Falk Hüffner (Univ. Jena)

Applications of Balanced Subgraph

- "Monotone subsystems" in gene regulatory networks [DasGupta et al., WEA 2006]
- Balance in social networks

[HARARY, Mich. Math. J. 1953]

e.g. Harary: A structural analysis of the situation in the Middle East in 1956, J. Conflict Resolution 1961

- Minimum energy state of magnetic materials (spin glasses) [KASTELEYN, J. Math. Phys. 1963]
- Stability of fullerenes

[Došlić & Vukičević, Discr. Appl. Math. 2007]

Integrated circuit design

[CHIANG et al., IEEE Trans. CAD of IC & Sys. 2007]

- 4 個 ト 4 ヨ ト 4 ヨ ト

Balanced Subgraph: known results

- BALANCED SUBGRAPH is NP-hard, since it is a generalization of MAX-CUT (MAX-CUT is the special case where all edges are ≠)
- A solution that keeps at least 87.8 % of the edges can be found in polynomial time

[Thagard & Verbeurgt, Cogn. Sci. 1998]

• A solution that deletes at most *c* times the edges that need to be deleted can probably not be found in polynomial time [KHOT, STOC 2002]

イロト 不得下 イヨト イヨト

solated Clique enumeration

Graph structure

Idea

Exploit the structure of the relevant networks

Falk Hüffner (Univ. Jena)

Data reduction

Data reduction

Replace the instance in polynomial time by a simpler, equivalent one.

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

イロト イポト イヨト イヨト

32/52

Data reduction

Data reduction

Replace the instance in polynomial time by a simpler, equivalent one.

Example

Delete all degree-1 vertices.

イロト 不得下 イヨト イヨト

Balanced subsystems

solated Clique enumeration

Vertex cut-based data reduction

イロト イポト イヨト イヨト

Data reduction scheme

Data reduction scheme

- Find cut S that cuts off small component C
- For each of the (up to symmetry) 2^{|S|-1} colorings of S, determine the size of an optimal solution for G[S ∪ C]
- Replace in G the subgraph $G[S \cup C]$ by an equivalent smaller gadget

|田田 |田田 |田田

Data reduction scheme

Data reduction scheme

- Find cut S that cuts off small component C
- For each of the (up to symmetry) 2^{|S|-1} colorings of S, determine the size of an optimal solution for G[S ∪ C]
- Replace in G the subgraph $G[S \cup C]$ by an equivalent smaller gadget

Subsumes all 8 data reduction rules given by $_{\rm [Wernicke,\ 2003]}$ for Edge Bipartization

- 4月 14 日 14 日 14 日 14

Balanced subsystems

solated Clique enumeration

Filling in the data reduction scheme

• Need to restrict both |S| and |C|: we use $|S| \le 4$ and $|C| \le 32$

3

イロト 不得下 イヨト イヨト

Balanced subsystems

Isolated Clique enumeration

Filling in the data reduction scheme

- Need to restrict both |S| and |C|: we use $|S| \le 4$ and $|C| \le 32$
- How to construct gadgets that behave equivalently to $S \cup C$?

イロト 不得下 イヨト イヨト

solated Clique enumeration

Gadget construction

Idea

Use atomic gadgets and describe their effect by cost vectors.

イロト イポト イヨト イヨト

Idea

Balanced subsystems

solated Clique enumeration

Gadget construction

Use atomic gadgets and describe their effect by cost vectors. Example u WO \cap 1 1 $\mathbf{0}$

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

3

- 4 個 ト 4 ヨ ト 4 ヨ ト

solated Clique enumeration

Gadget construction

Theorem

With 10 atomic gadgets, we can emulate the behavior of any component behind a 3-vertex cut.

3

- 4 個 ト 4 ヨ ト 4 ヨ ト

Gadget construction

Theorem

With 10 atomic gadgets, we can emulate the behavior of any component behind a 3-vertex cut.

Theorem

All cuts with |S| = 2 and $|C| \ge 1$ and and all cuts with |S| = 3and $|C| \ge 2$ are subject to data reduction.

- 4 同 1 - 4 回 1 - 4 回 1

Gadget construction

Theorem

With 10 atomic gadgets, we can emulate the behavior of any component behind a 3-vertex cut.

Theorem

All cuts with |S| = 2 and $|C| \ge 1$ and and all cuts with |S| = 3and $|C| \ge 2$ are subject to data reduction.

• 4-cuts: 2948 atomic gadgets

(4 個)ト イヨト イヨト

solated Clique enumeration

Gadget construction

Problem

How to determine an appropriate set of atomic cost vectors for a given cost vector?

イロト イポト イヨト イヨト

Isolated Clique enumeration

Gadget construction

Problem

How to determine an appropriate set of atomic cost vectors for a given cost vector?

Vector Sum Problem

Given a set S of n vectors of length l with nonnegative integer components and a target vector t of length l, find a sub-(multi)-set of vectors from S that sums to t.

- 4 同 1 - 4 回 1 - 4 回 1

Isolated Clique enumeration

Gadget construction

Problem

How to determine an appropriate set of atomic cost vectors for a given cost vector?

Vector Sum Problem

Given a set S of n vectors of length l with nonnegative integer components and a target vector t of length l, find a sub-(multi)-set of vectors from S that sums to t.

• "Equality-constrained multidimensional knapsack"

- 4 同 1 - 4 回 1 - 4 回 1

Isolated Clique enumeration

Gadget construction

Problem

How to determine an appropriate set of atomic cost vectors for a given cost vector?

Vector Sum Problem

Given a set S of n vectors of length l with nonnegative integer components and a target vector t of length l, find a sub-(multi)-set of vectors from S that sums to t.

- "Equality-constrained multidimensional knapsack"
- In our implementation: simple branch & bound

- 4 個 ト 4 ヨ ト 4 ヨ ト

Isolated Clique enumeration

Gadget construction

Problem

How to determine an appropriate set of atomic cost vectors for a given cost vector?

Vector Sum Problem

Given a set S of n vectors of length l with nonnegative integer components and a target vector t of length l, find a sub-(multi)-set of vectors from S that sums to t.

- "Equality-constrained multidimensional knapsack"
- In our implementation: simple branch & bound
- Sometimes this is a bottleneck!

イロト 不得下 イヨト イヨト

Balanced subsystems

Isolated Clique enumeration

Reduction... and then?

Balanced subsystems

Isolated Clique enumeration

Reduction... and then?

After data reduction, a hard "core" remains.

Idea

Exploit the fact that only few edges need to be deleted.

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

Isolated Clique enumeration

Fixed-parameter tractability

Theorem

BALANCED SUBGRAPH can be solved in $O(2^k \cdot m)$ time by a reduction to EDGE BIPARTIZATION and using an algorithm based on iterative compression [Guo et al. 2006].

(4 個)ト イヨト イヨト

Isolated Clique enumeration

Fixed-parameter tractability

Theorem

BALANCED SUBGRAPH can be solved in $O(2^k \cdot m)$ time by a reduction to EDGE BIPARTIZATION and using an algorithm based on iterative compression [Guo et al. 2006].

A heuristic speedup trick can give large speedups over this worst-case running time.

当ちょうきょ

- 4 A b

solated Clique enumeration

Experimental results

			Approximation			Exact alg.	
Data set	п	т	$k \ge$	$k \leq$	t [min]	k	t [min]
EGFR	330	855	196	219	7	210	108
Yeast	690	1082	0	43	77	41	1
Macr.	678	1582	218	383	44	374	1

◆ロト ◆聞ト ◆ヨト ◆ヨト

3

Experimental results

			Approximation			Exact alg.	
Data set	n	т	$k \ge$	$k \leq$	t [min]	k	t [min]
EGFR	330	855	196	219	7	210	108
Yeast	690	1082	0	43	77	41	1
Macr.	678	1582	218	383	44	374	1

• Yeast is not solvable without reducing 4-cuts

• A real-world network with 688 vertices and 2208 edges could not be solved

イロト 不得下 イヨト イヨト

- Directed case of BALANCED SUBGRAPH (delete minimum number of edges to remove all unbalanced cycles): FPT?
 - Problem: Characterization by two-coloring does not work
- The data reduction scheme is applicable to all graph problems where a coloring or a subset of the vertices is sought. For example:
 - VERTEX COVER
 - Dominating Set
 - 3-Coloring
 - Feedback Vertex Set

but: need small cuts (e.g., small-world networks)

イロト 不得下 イヨト イヨト

Protein complexes

Falk Hüffner (Univ. Jena)

Optimal Solutions for Hard Network Problems in Bioinformatics

43/52

3

Clique Enumeration

Application

- Analysis of biological, social, and other networks
- Finding complexes in protein interaction networks
- Clustering in data mining

< 17 ►

프 문 문 프 문

Clique Enumeration

Application

- Analysis of biological, social, and other networks
- Finding complexes in protein interaction networks
- Clustering in data mining

Maximal clique enumeration

- Simple model
- NP-hard
- up to $3^{n/3}$ cliques

(4 回 ト 4 ヨ ト 4 ヨ ト

Clique Enumeration

Application

- Analysis of biological, social, and other networks
- Finding complexes in protein interaction networks
- Clustering in data mining

Maximal clique enumeration

- Simple model
- NP-hard
- up to $3^{n/3}$ cliques

Isolated cliques

- More specific model
- More efficient enumeration algorithms (FPT)

c-Isolation

Definition (Ito, Iwama & Osumi, ESA 2005)

A vertex set S is called c-isolated if on average the vertices in S have less than c neighbors outside of S.

Example: 2-isolation

- 4 同 1 - 4 回 1 - 4 回 1

Isolated Clique enumeration

c-Isolation

Definition (Ito, Iwama & Osumi, ESA 2005)

A vertex set S is called c-isolated if on average the vertices in S have less than c neighbors outside of S.

Example: 2-isolation

- ∢ ⊢⊒ ト

∃ ► < ∃ ►</p>

Balanced subsystems

Isolated Clique enumeration

Enumerating maximal *c*-isolated cliques

Theorem

All maximal c-isolated cliques in a graph G can be enumerated in $O(2.89^c \cdot c^2m)$ time.

- 4 同 1 - 4 回 1 - 4 回 1

Balanced subsystems

Isolated Clique enumeration

Comparison of isolation concepts

Falk Hüffner (Univ. Jena)

47/52

Finding complexes: Experimental setup

Question

Are isolated cliques a good model for complexes?

Experiment

- We retrieved a protein interaction network from BioGRID: *S. cerevisiae*: 5195 nodes, 70911 edges.
- We retrieved annotation data for each protein from the Saccharomyces Genome Database (SGD).
- For each enumerated clique, we calculated the *p*-values for the enrichment of annotation terms with the GO Termfinder software, and chose the annotation term with the lowest *p*-value.

Balanced subsystems

Isolated Clique enumeration

Finding complexes: Experimental results

General observations

- running time: few seconds
- maximal isolated cliques show more significant enrichment of annotation terms than maximal cliques

- 4 同 1 - 4 回 1 - 4 回 1

Isolated Clique enumeration

Finding complexes: Experimental results

Comparison of mean p-values of the enumerated maximal min-c-isolated cliques and different values of c.

Falk Hüffner (Univ. Jena)

< A

東ト

Isolated Clique enumeration

Finding complexes: Experimental results

Distribution of the number of enumerated cliques in the yeast network for different isolation concepts and strengths.

Falk Hüffner (Univ. Jena)

References

 Falk Hüffner, Sebastian Wernicke, and Thomas Zichner: Algorithm engineering for color-coding with applications to signaling pathway detection. Algorithmica.

Accepted for publication, June 2007.

 Falk Hüffner, Nadja Betzler, and Rolf Niedermeier: Optimal edge deletions for signed graph balancing. Proc. 6th Workshop on Experimental Algorithms (WEA '07), 2007.

LNCS 4525, pp. 297-310.

• Falk Hüffner:

Algorithms and Experiments for Parameterized Approaches to Hard Graph Problems.

PhD thesis, Universität Jena, to appear.