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Sharon Bruckner1 Falk Hüffner2 Christian Komusiewicz2

1Institut für Mathematik, Freie Universität Berlin

2Institut für Softwaretechnik und Theoretische Informatik, TU Berlin

30 September 2014

S. Bruckner et al. (FU Berlin & TU Berlin) Core–Periphery Structures in Protein Interaction Networks 1



Protein Complex Identification

Task: Given a protein interaction network, identify its protein
complexes and functional modules

Common assumptions:

Complexes and functional modules are dense subnetworks

Functional modules have no or only small overlap

 Formulation as graph clustering problem

Cluster Editing
Input: An undirected graph G = (V ,E ).
Task: Find a minimum-size set of edge deletions and edge
insertions that converts the graph into a cluster graph, that is, a
graph where each connected component is a clique.
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Denseness of Complexes and Functional Units
Problem: Functional units are not necessarily dense

Nucleosome remodeling deacetylase (NuRD) complex of M. musculus

and its interactions with transcription factors

 
Core–periphery model of protein complexes
[Gavin et al., Nature ’06]
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Core–Periphery Model
Aim: Uncover global core–periphery structure of given
PPI network with dense cores and sparse peripheries.

Formalization:

Split graph = can be partitioned
into clique and independent set

Split cluster graph = every
connected component is a split graph

 

Split Cluster Editing
Input: An undirected graph G = (V ,E ).
Task: Find a minimum-size set of edge deletions and edge
insertions that converts the graph into a split cluster graph.
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Shared Peripheries
So far:

Complexes and functional modules
are dense subnetworks have core–periphery structure
Functional modules have no or only small overlap

Now: allow overlap but only in peripheries  

Monopolar graph = can be
partitioned into cluster graph
and independent set
 

Monopolar Editing
Input: An undirected graph G = (V ,E ).
Task: Find a minimum-size set of edge deletions and edge
insertions that converts the graph into a monopolar graph.
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Problem Complexity—Split Cluster Editing

Theorem: (Foldes & Hammer ’71) A graph is a split graph iff it
does not contain an induced subgraph that is a 2K2, C4, or C5.

2K2 C4 C5 bowtienecktieP5

Main Results:
A graph is a split cluster graph iff it does not contain an induced
subgraph that is a C4, C5, P5, necktie, or bowtie.
Split Cluster Editing is APX-hard and NP-hard even on graphs
with maximum degree 11.
Split Cluster Editing can be solved in O(10k ·m) time, where k
is the number of necessary edge modifications.
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Problem Complexity—Monopolar Editing

Observation: Monopolar graphs have infinitely many forbidden
subgraphs (smallest and only with 5 vertices is the wheel W4 ( )).

Known: Vertex-partitioning into fixed additive induced-hereditary
properties is NP-hard [Farrugia, Electron. J. Combin. ’04].

 Deciding whether a graph is monopolar is NP-hard.
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ILP formulations

Forbidden subgraph-based

Partition variables

Column generation
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Forbidden subgraph-based ILP formulation for SCE

First try: use forbidden subgraph characterization

 

Binary variable euv = 1 if {u, v} is in the solution graph
Define ēuv := 1− euv

minimize
∑

{u,v}∈E

ēuv +
∑

{u,v}/∈E

euv

subject to

∀ forbidden subgraph F :
∑

{u,v}∈F

ēuv +
∑

{u,v}/∈F

euv ≥ 1

O(n5) constraints  use row generation (lazy constraints)
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Partition variable ILP formulation for SCE

Idea: Fix the assignment to core and periphery before destroying
the forbidden subgraphs

Lemma: Let G = (V ,E ) be a graph and C ∪̇ I = V a partition of
the vertices. Then G is a split cluster graph with core vertices C
and independent set vertices I iff it does not contain an edge
with both endpoints in I , nor an induced P3 with both endpoints
in C .
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Partition variable ILP formulation for SCE

Binary variable euv = 1 if {u, v} is in the solution graph.
Define ēuv := 1− euv

Binary variable cu = 1 if u is a core vertex.
Define c̄u := 1− cu.

minimize
∑

{u,v}∈E

ēuv +
∑

{u,v}/∈E

euv

subject to

∀u, v : cu + cv + ēuv ≥ 1

∀u 6= v , v 6= w > u : ēuv + ēvw + euw + c̄u + c̄w ≥ 1

O(n3) constraints  still use row generation (lazy constraints)
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Partition variable ILP formulation for Monopolar Editing

Idea (again): Fix the assignment to core and periphery before
destroying the forbidden subgraphs

Lemma: Let G = (V ,E ) be a graph and C ∪̇ I = V a partition of
the vertices. Then G is a split cluster graph with core vertices C
and independent set vertices I iff it does not contain an edge
with both endpoints in I , nor an induced P3 consisting only of
vertices in C .
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Partition variable ILP formulation for Monopolar Editing

Binary variable euv = 1 if {u, v} is in the solution graph.
Define ēuv := 1− euv

Binary variable cu = 1 if u is a core vertex.
Define c̄u := 1− cu.

minimize
∑

{u,v}∈E

ēuv +
∑

{u,v}/∈E

euv

subject to

∀u, v : cu + cv + ēuv ≥ 1

∀u 6= v , v 6= w > u : ēuv + ēvw + euw + c̄u + c̄v + c̄w ≥ 1

O(n3) constraints  still use row generation (lazy constraints)
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Column generation for Split Cluster Editing

Binary variables zC = 1 if cluster C ∈ 2V is part of the solution.

maximize
∑
C∈2V

cC zC ,

s. t.
∑

C∈2V |u∈C

zC = 1 ∀u ∈ V ,

where cC is the “value” of the cluster (number of edges of G [C ]
minus the splittance of G [C ], that is, the number of edge
insertions and deletions to make it a split graph).

Problem: Exponentially many variables.

Idea: Successively add only those variables (“columns”) that are
“needed”, that is, their introduction improves the objective.
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Column Generation: Auxiliary problem

Lemma: For the relaxation of the ILP, the objective function
change from adding a cluster C is

cC −
∑
u∈C

λu,

where λu is the shadow price associated with the constraint of
vertex u.

 need to find a cluster that maximizes cluster value minus vertex
weights.

Idea: Use an ILP.
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ILP tuning tricks

Warm start with heuristic solution

MIP emphasis: balance between proving optimality and
finding better solutions

Cutting planes for P5: for all distinct u, v ,w , x , y ∈ V :

ēuv + ēvw + ēwx + ēxy +
1

2
euw + evx +

1

2
ewy +

1

2
exu +

1

2
eyv ≥ 1.

(for monopolar, W4)
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Heuristics

Forbidden subgraph-based

Simulated annealing
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Forbidden subgraph heuristic for Split Cluster Editing

Idea
Edit an edge that destroys many forbidden subgraphs.

Problems

Slow

Can get caught in loops

Not very good results
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Simulated Annealing heuristic for Split Cluster Editing

Simulated Annealing

Start with a clustering where each vertex is a singleton.

Randomly move a vertex to a cluster that contains one of its
neighbors.

Accept if this improves the objective k ; otherwise, accept with
small probability that decreases over time.

To evaluate the objective, we can use the following theorem:

Theorem (Hammer & Simeone ’81)

The minimum number of edits to make a graph a split graph can
be found in linear time.
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Data reduction

We didn’t find any useful data reduction rules. However, we have
two rules that allow to fix the value of variables in the ILP:

Rule 1
If there is a degree-one vertex u whose neighbor has degree larger
than one, then label u as periphery (cu = 0).

Rule 2
If there is an edge {u, v} between two vertices labeled as periphery,
then this edge cannot be present in the solution (euv = 0).
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Experimental Setup
Data: three yeast protein interaction subnetworks

cell cycle transcription translation

Comparison with:

Core–periphery enumeration algorithm
[Luo et al., BMC Bioinformatics ’09]

SCAN clustering algorithm [Xu et al., KDD ’07]
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Experimental Results (I)

Objective value:

n m kSCE kME

cell cycle 196 797 321 126
transcription 215 786 273 106
translation 188 2352 308 240

Results for Simulated Annealing; confirmed as optimal by ILP in
green.
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Experimental Results (II)

GO-term coherence & cluster number:

transcription

K p k ct cc cp

SCE 13 112 273 0.54 0.54 0.57
ME 26 78 106 0.55 0.61 0.54
SCAN 26 58 — 0.53 0.51 0.47
Luo 12 125 — 0.40 0.52 0.38

K = number of clusters
p = size of periphery
ct = average cluster coherence
cc = average core coherence
cp = average periphery coherence
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Experimental Results (III)
Overlap test with known protein complexes (CYC2008):

Hypothesis for perfect recovery:

Core contains only complex proteins

Complex is contained completely in cluster

transcription

D core% comp%

SCE 7 / 11 89 100
ME 11 / 11 100 100
SCAN 8 / 11 84 100
Luo 6 / 11 87 100

D : number of detected clusters
core% : median percentage of core proteins in complex
comp% : median percentage of complex proteins in cluster
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Conclusion

Results:

Two new concrete graph-theoretic models for uncovering
global core–periphery structure of PPI networks

Useful ILP formulations based on core/periphery-assignment

Simulated Annealing heuristic performs well

Monopolar Editing gives best biological results

Outlook:

Algorithmic improvements
(goal: good results for complete interactome)

Incorporate interaction confidence scores

Further combinatorial core–periphery models

Find further approaches to exploit/evaluate predictions by
Monopolar Editing
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