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DNA Sequence Assembly

Diploid cells have two copies of each chromosome



DNA Sequence Assembly

Chromosome assignments of the fragments in shotgun assembly are
initially unknown



DNA Sequence Assembly

Pairwise conflicts indicate that two fragments are from different
copies



DNA Sequence Assembly

Pairwise conflicts indicate that two fragments are from different
copies



DNA Sequence Assembly

Reconstruction of chromosome assignment from the bipartite con-
flict graph



Minimum Fragment Removal

In practise, contaminations occur.



Minimum Fragment Removal

Contamination fragments will conflict with fragments from both
copies.



Minimum Fragment Removal

The task is to recognize contamination fragments.



Formalization as Graph Bipartization

Graph Bipartization
Input: An undirected graph G = (V ,E ) and a
nonnegative integer k.
Task: Find a subset C ⊆ V of vertices with |C | = k
such that G [V \ C ] is bipartite.



Formalization as Graph Bipartization

Graph Bipartization
Input: An undirected graph G = (V ,E ) and a
nonnegative integer k.
Task: Find a subset C ⊆ V of vertices with |C | = k
such that G [V \ C ] is bipartite.

Equivalent formulation:

Odd Cycle Cover
Task: Find a subset C ⊆ V of vertices with |C | = k
such that C touches every odd cycle in G.



Graph Bipartization

I Graph Bipartization is NP-complete [Lewis and Yannakakis,

JCSS 1980]; it has numerous applications, e. g. in VLSI design
and register allocation

I Graph Bipartization is MaxSNP-hard [Papadimitriou and

Yannakakis, JCSS 1991]. The best known polynomial-time
approximation is by a factor of log |V |
[Garg, Vazirani, and Yannakakis, SIAM J. Comput. 1996]
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Parameterization

Approach: For Minimum Fragment Removal, k � n. Try
to confine the combinatorial explosion to k

Definition
For some parameter k of a problem, the problem is called
fixed-parameter tractable with respect to k if there is an algorithm
that solves it in f (k) · nO(1).

Graph Bipartization is fixed-parameter tractable with respect
to k [Reed, Smith&Vetta, Oper. Res. Lett. 2004].
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Iterative Compression

Approach: use a compression routine iteratively.
Compression routine: Given a size-(k +1) solution, either computes
a size-k solution or proves that there is no size-k solution.



Compression Routine for Graph Bipartization

Idea: Convert the covering problem to a cut problem.
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Compression Routine for Graph Bipartization

Idea: Convert the covering problem to a cut problem.



Valid Partitions

But: The resulting multi-cut problem is still NP-complete!

Definition
A valid partition divides the vertices into input vertices and
output vertices such that for each pair one is input and one is
output.

A cut between the input vertices and the output vertices of a valid
partition provides a smaller bipartization solution.

Lemma ([Reed, Smith&Vetta 2004])

If there is a smaller bipartization solution, then there is a valid
partition such that this solution is a cut between the input vertices
and the output vertices.
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Valid Partitions



Compression Routine Graph Bipartization

Compression Routine:

I Enumerate all 2k valid partition

I For each, find a vertex cut in k ·m time

Theorem
Graph Bipartization can be solved in O(3k · kmn) time.
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Compression Routine:

I Enumerate all 2k valid partition

I For each, find a vertex cut in k ·m time

Theorem
Graph Bipartization can be solved in O(3k · kmn) time.



Experimental Results

Run time in seconds for some Minimum Site Removal instances

n m k ILP Reed

A31 30 51 2 0.02 0.00
J24 142 387 4 0.97 0.00
A10 69 191 6 2.50 0.00
J18 71 296 9 47.86 0.05
A11 102 307 11 6248.12 0.79
A34 133 451 13 10.13
A22 167 641 16 350.00
A50 113 468 18 3072.82
A45 80 386 20
A40 136 620 22
A17 151 633 25
A28 167 854 27
A42 236 1110 30
A41 296 1620 40

[Data from Wernicke 2003]



Using Gray Codes to enumerate Valid Partitions

I The flow problems for different valid partitions are “similar” in
such a way that we can “recycle” the flow networks for each
problem

I Using a Gray code, we can enumerate valid partitions such
that adjacent partitions differ in only one element

I Only O(m) time, as opposed to O(km) time for solving a flow
problem from scratch

I Worst-case speedup by a factor of k
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Experimental Results

Run time in seconds for some Minimum Site Removal instances

n m k ILP Reed Gray

A31 30 51 2 0.02 0.00 0.00
J24 142 387 4 0.97 0.00 0.00
A10 69 191 6 2.50 0.00 0.00
J18 71 296 9 47.86 0.05 0.01
A11 102 307 11 6248.12 0.79 0.14
A34 133 451 13 10.13 1.04
A22 167 641 16 350.00 64.88
A50 113 468 18 3072.82 270.60
A45 80 386 20 2716.87
A40 136 620 22
A17 151 633 25
A28 167 854 27
A42 236 1110 30
A41 296 1620 40

[Data from Wernicke 2003]



A Heuristic for Dense Graphs

I By examining the subgraph induced by the known odd cycle
cover, we can omit many valid partitions from consideration

I No worst-case speedup for general graphs, but very effective
in practice



A Heuristic for Dense Graphs

I By examining the subgraph induced by the known odd cycle
cover, we can omit many valid partitions from consideration

I No worst-case speedup for general graphs, but very effective
in practice



Experimental Results

Run time in seconds for some Minimum Site Removal instances

n m k ILP Reed Gray Enum2Col

A31 30 51 2 0.02 0.00 0.00 0.00
J24 142 387 4 0.97 0.00 0.00 0.00
A10 69 191 6 2.50 0.00 0.00 0.00
J18 71 296 9 47.86 0.05 0.01 0.00
A11 102 307 11 6248.12 0.79 0.14 0.00
A34 133 451 13 10.13 1.04 0.04
A22 167 641 16 350.00 64.88 0.08
A50 113 468 18 3072.82 270.60 0.05
A45 80 386 20 2716.87 0.14
A40 136 620 22 0.80
A17 151 633 25 5.68
A28 167 854 27 1.02
A42 236 1110 30 73.55
A41 296 1620 40 236.26

[Data from Wernicke 2003]



Heuristic on Random Graphs
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Conclusions

I Iterative compression is a superior method for solving Graph
Bipartization in practice

I This makes the practical evaluation of iterative compression
for other applications (such as Feedback Vertex Set)
appealing

Future work and open questions:

I Combination with data reductuction rules

I Application to Edge Bipartization

I Combination with heuristics



Conclusions

I Iterative compression is a superior method for solving Graph
Bipartization in practice

I This makes the practical evaluation of iterative compression
for other applications (such as Feedback Vertex Set)
appealing

Future work and open questions:

I Combination with data reductuction rules

I Application to Edge Bipartization

I Combination with heuristics


